熱舒適度案例

14
中華民國建築學會「建築學報」第 65 期,125~138 頁,2008 9 Journal of Architecture, No.65, pp.125~138, Sep. 2008 簡報室熱舒適度案例之研究 林盛隆 * 魏士閔 ** 黃俊豪 *** 陳王琨 **** 關鍵字:熱舒適度,簡報室,熱舒適感受,預測模式,問卷調查 室內熱舒適度不僅影響到居住者的健康與生產力,同時對節省能源的訴求更是重要。本文以現 場實測數據,探討中部某資源回收廠內簡報室之熱舒適度;其目的為:(1)瞭解參訪者對廠內簡報 室之舒適感受;及(2)找出熱舒適度之預測模式以控制室內空調之設定。實驗是利用自動連續量測 (Automatic Sampling Method, ASM)及現場問卷調查,取得舒適度之物理因子及主觀參數。這些參 數經相關性分析得知,以室外溫度具有高度相關性,其他參數如衣著量、風速、濕度及 CO 2 在此 次實驗結果中尚不明顯;故只採室外溫度進行線性迴歸分析,結果得知在實驗期間,廠內簡報室的 舒適溫度為 23.2 (範圍 22.0~25.6 )Thermal Comfort Study of an Air-Conditioned Presentation Room in Taiwan Sheng-Lung Lin * Shih-Min Wei ** Chun-Hao Huang *** Wang-Kun Chen **** KEYWORDS: Thermal Comfort, Presentation Room, Thermal Sensation, Adaptive Model, Questionnaire ABSTRACT The thermal comfort affects the health and productivity of occupants, whereas it is an important issue of the energy saving. This paper evaluated the thermal comfort in an air-conditioned presentation room of an incineration plant in Taiwan. The objectives of the study include: (1) to understand the thermal sensation of the visitors, and (2) to find the predicted optimal control temperature of air conditioner in the room. An ASM tool was used to measure indoor comfort parameters, and the questionnaire surveys to collect subjective parameters, such as heights, weights, clothing, and feelings about thermal comfort of interviewers, were conducted simultaneously. Combining with the results from field measurements, comfort parameters were correlated to the thermal comfort, and the result shows that except outdoor average temperature, there are no significant correlations between the thermal comfort and other parameters. It indicated that the outdoor average temperature had an impact on the prediction of indoor thermal comfort. A weakness of adaptive model was developed and computed that the optimal thermal temperature was 23.2 °C with a range of 22.0 ~ 25.6 °C. * 朝陽科技大學環境工程與管理系助理教授(通訊作者 Email:[email protected]) Assistance Professor, Dept. of Environmental Engineering and Management, Chaoyang University of Tech., Taiwan ** 朝陽科技大學環境工程與管理系研究生 Graduate Student, Dept. of Environmental Engineering and Management, Chaoyang University of Tech., Taiwan *** 朝陽科技大學環境工程與管理系研究生 Graduate Student, Dept. of Environmental Engineering and Management, Chaoyang University of Tech., Taiwan **** 景文科技大學環境與物業管理系副教授 Associate Professor, Dept. of Environment and Property Management, Jinwen University of Sci. and Tech., Taiwan 2007 6 25 日受稿, 2008 5 23 日通過 125

Upload: cygcheng

Post on 25-Oct-2014

101 views

Category:

Documents


1 download

TRANSCRIPT

65 125~138 2008 9 Journal of Architecture, No.65, pp.125~138, Sep. 2008

* ** *** ****

(1) (2) (Automatic Sampling Method, ASM) CO2 23.2 ( 22.0~25.6 )

Thermal Comfort Study of an Air-Conditioned Presentation Room in TaiwanSheng-Lung Lin* Shih-Min Wei** Chun-Hao Huang*** Wang-Kun Chen****

KEYWORDS: Thermal Comfort, Presentation Room, Thermal Sensation, Adaptive Model, Questionnaire

ABSTRACTThe thermal comfort affects the health and productivity of occupants, whereas it is an important issue of the energy saving. This paper evaluated the thermal comfort in an air-conditioned presentation room of an incineration plant in Taiwan. The objectives of the study include: (1) to understand the thermal sensation of the visitors, and (2) to find the predicted optimal control temperature of air conditioner in the room. An ASM tool was used to measure indoor comfort parameters, and the questionnaire surveys to collect subjective parameters, such as heights, weights, clothing, and feelings about thermal comfort of interviewers, were conducted simultaneously. Combining with the results from field measurements, comfort parameters were correlated to the thermal comfort, and the result shows that except outdoor average temperature, there are no significant correlations between the thermal comfort and other parameters. It indicated that the outdoor average temperature had an impact on the prediction of indoor thermal comfort. A weakness of adaptive model was developed and computed that the optimal thermal temperature was 23.2 C with a range of 22.0 ~ 25.6 C.( Email:[email protected]) Assistance Professor, Dept. of Environmental Engineering and Management, Chaoyang University of Tech., Taiwan ** Graduate Student, Dept. of Environmental Engineering and Management, Chaoyang University of Tech., Taiwan *** Graduate Student, Dept. of Environmental Engineering and Management, Chaoyang University of Tech., Taiwan **** Associate Professor, Dept. of Environment and Property Management, Jinwen University of Sci. and Tech., Taiwan*

2007 6 25 2008 5 23

125

65 2008 9

90% (Hoppe and Martinac, 1998) 33~35 1 6% 1.4 CO2 28 () (Meyer, 2002)ISO 7730(1995) ASHRAE Standard 55(2004) (Cheong, 2003)(Mui and Chan, 2003)(Yamtraipt, et al., 2005)(Feriadi, 2004) 21.4~27.5 20.9~25.0 25.3~28.5 ASHRAE Standard 55(1992)1.2 Met (1 Met=58.15 W/m) (0.5 Clo0.9 Clo)23.5 (RH=50%10% )21.5~25.5 ET* [:ET*=]22.5 (RH=50%10% )20.5~24.5 ET*23~24 ET* (Thermal Environmental IndexTEI) TEI

126

1. 2.

(Fanger, 1970) Fanger(predicted mean votePMV) PMV(predicted of percentage dissatisfiedPPD)(Olesen and Bragen, 2004)PMV( )()PMV (Nicol and Roaf, 2005) (Mui and Chan, 2003) (Erlandson, et al., 2003)PMV Humphrey(2005) (Zhang,,et al., 2007) ASHRAE (comfort zone) (ET*) deDearBrager(1998)ASHRAE(RP-884)( 22,246)(TC)(TO)

TC = 17.8 + 0.31TONicol,et al(1999)23

(1)

TC = 18.5 + 0.36TO TC = 13.5 + 0.54TO

(2) (3)

2 7 0.22 m/s0.05 m/s1~2

127

65 2008 9 3 6 1 (Mui and Chan, 2003)

TC = 18.303 + 0.158TO(TI)

(4)

Auliciems(1981)

TC = 0.48TI + 0.14TO + 9.225

(5)

(Automatic Sampling MethodASM) (1)20.90 m13.60 m4.45 m 1363900 m3/hr1980 cm2244.20 M 3600 cm212 4.0 M(100 W)5.168 KW0.5 KW

1

128

92ASM (Yamtraipt,et al, 2005) (1) ( D1~D9(2) (2) ASHRAE1.8 m 50 cm~150 cm 140 cm~150 cm100 cm ~110 cm60 cm 110 cm (3) D1~D9 110 cm (4) 100 cm ~110 cm (5) (6) ()28.1 75.3%( )17.7 74.0%

2

129

65 2008 9 23~28 60%~75%0.5 m/s 20 ASHRAE(2004)(1) 1 SHRAE +3 +2 +1 0 -1 -2 -3

4-1 ISO 7730ASHRAE Standard 55PMVPPD (ASHRAE Standard 55, 2004) 2 22.4~27.8 1:20

130

95.04.271:5532.6 20.8 32.6 3 2 2006.03.10 2006.04.20 2006.04.27 2006.05.05 2006.05.06 2006.05.09 2006.05.11 2006.06.18 2006.10.27 11 30 27 44 13 26 27 5 26 29 28 23 11 18 21 28 7 16 mean SD mean SD mean SD mean SD mean 26.0 28.5 27.3 26.5 27.3 26.8 27.0 27.4 28.5 3.3 3.7 3.3 3.7 3.7 4.3 1.6 1.4 5.0 22.7 22.7 23.2 22.4 22.9 24.1 23.9 23.5 27.8 0.7 0.9 2.0 0.9 0.6 0.9 2.3 2.4 1.1 65.8 65.7 61.7 65.7 63.1 59.9 60.1 64.3 64.7 0.6 0.6 1.9 2.4 0.5 1.3 0.9 1.5 0.3 SD () () (%) (m/s) CO2(ppm)

0.12 0.06 865.0 30.6 0.11 0.06 859.6 37.9 0.10 0.07 828.4 97.7 0.04 0.04 701.3 117.5 0.03 0.03 801.5 52.1 0.04 0.02 642.5 122.6 0.03 0.02 726.1 84.7 0.04 0.03 508.6 21.2 0.02 0.02 832.9 75.3 -

209 181

Temperature Profile 25.5 25.0 24.5 Temperature 24.0 23.5 23.0 22.5 22.0 21.5 21.0 13:05 13:35 14:05 14:35 15:05 15:35 16:05 16:35

Time

3 (2006.05.09)

131

65 2008 9 57.9 73.0 95.05.05 73.0 95.05.11 57.9 (0.20-0.40 m/s) 0.02-0.12 m/s 0.27 m/s 0.00 m/s 0.27 m/s 0 m/s 95.05.05 0.35 m/s 0.00 m/s CO2 CO2 CO2 (95.05.11) 1036.3 ppm (95.05.18) 473.4 ppm CO2 473.4 1036.3 ppm(95.05.11) CO2 4 800 ppm

Carbon Dioxide Concentration Profile 1000.0 800.0 600.0 400.0 200.0 0.0 13:05

ppm

13:35

14:05

14:35 Time

15:05

15:35

16:05

16:35

4 (2006.05.11) 4-2 460

132

390 209 (53.6%) 181 (46.4%) (clo) 0.550.14 clo 0.610.19 clo 0.60.2 clo ASHRAE Standard 55(2004) 80% -1 0 1 5 84.53%(-2)(-3) 13.81% 80% 13.81% Temperature80

No. of Occupants, (%)

60

40

20

0 Cold Cool Slightly Cool Neutral Slightly Warm Warm Hot

Males

Females

Both

5 60~70( )() 6 (59%)29% 3%0.2 m/s(ASHRAE Standard 55, 2004)0.1 m/s68% 83%(7) 1.0 m/s(Olesen and Brager, 2004) (3)

133

65 2008 9 (2)(1)(0) 93.91(-1)(-2) (-3) 6.8 8

Humidity80

No. of Occupants, (%)

60

40

20

0 Very Dry Moderately Dry Slightly Dry Neutral Slightly Humid Moderately Humid Humid

Males

Females

Both

6

Air Movement80

No. of Occupants, (%)

60

40

20

0 Very Still Moderately Still Slightly Still Acceptable Slightly Draughty Moderately Draughty Very Draughty

Males

Females

Both

7

134

Overall Themal Comfort60

No. of Occupants, (%)

40

20

0 Very Comfortable Comfortable Slightly Comfortable Neutral Slightly Uncomfortable Uncomfortable Very Uncomfortable

Males

Females

Both

8 4-3 SPSS 3 (ASHRAE Standard 55, 2004) (r0.716) BMI (Zhang,et al., 2007) PMV (De and Brager, 1998) (Mui and Chan, 2003) (TC) 9 TC = 15.5 + 0.29 TO To()R2 = 0.51 22.4 ~ 32.6 Monte Carlo 4Monte Carlo 50%23.2 C1~4 26.128.127.922.5 4 PMV 25 1.8 (7.8%) (6)

135

65 2008 9 1~2 3 Pearson Pearson Pearson BMI Pearson Pearson Pearson Pearson Pearson 0.716** 0.000 0.167** 0.003 -0.290** 0.000 -0.433** 0.000 -0.136 0.014 0.082 0.139 -0.109 0.049 -0.412** 0.000 -0.348** 0.000 -0.607** 0.000 -0.027 0.631 0.087 0.117 -0.201** 0.296** 0.000 0.000 1 1 1 1 1 1 BMI

0.275** 0.258** 0.187** 0.000 -0.017 0.758 0.000 0.001

0.147** 0.540** 0.327** 0.008 0.000 0.000

1

**0.01()

30

T c = 15.5+ 0.29T o R2 = 0.51

28

26 () 24

22

20 20 22 24 26 28 30 32 34 36 38 40

(C) ()

9

136

4 5% 25% 50% 75% 95% () 22.3 24.6 26.7 29.5 34.9 22.0 22.6 23.2 24.1 25.6 (1) 24.7 25.4 26.1 26.9 28.6 (2) 26.5 27.4 28.1 29.1 31.1 (3) 25.5 26.8 27.9 29.4 32.3 (4) 21.8 22.2 22.5 23.0 23.8

(0)77.35% 93.9%6.1% BMICO2 23.2 (22.0 ~ 25.6 ) CO2 CO21000ppm CO2

ASHRAE Standard 55 - Thermal Environmental Conditions for Human occupancy(2004) American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta. Auliciems A.( 1981) Towards a psycho-physiological model of thermal perception, International Journal

137

65 2008 9 of Biometeorology, No.25(2):109-122. Cheong, K.W.D., Djunaedy, E., Tham, K.W. and Sekhar, S.C.(2003) Thermal comfort study of an air-conditioned lecture theatre in the tropics, Building and Environment, No.38: 63-73. De Dear, R.J. and Brager, G.S.(1998) Developing an adaptive model of thermal comfort and preference, ASHRAE Transactions, No.104, Part I: 145-167. Erlandson, T., Cena, K., de Dear, R. and Havenith, G.(2003) Environmental and human factors influencing thermal comfort of office occupants in hot-humid and hot-arid climates, Ergonomics, No.46(6): 616-628. Fanger, P.O.(1970) Thermal comfort, Danish Technical Press, Copenhagen. Feriadi, H. and Wong, N.H.(2004) Thermal comfort for naturally ventilated houses in Indonesia, Energy and Buildings, No.36: 614-626. Hoppe, P. and Martinac, I.(1998) Indoor climate and air quality, International Journal of Biometeorology, No.42:1-7. Humphreys, M.A.(2005) Quantifying occupant comfort: are combined indices of the indoor environment practicable, Building Research & Information, No.33(4): 317-325. ISO 7730(1995) Moderate Thermal Environments Determination of the PMV and PPD indices and specification of the conditions for thermal comfort, International Organization for Standardization, Geneva. Meyer, W.B.(2002) Why indoor climates change: a case study, Climatic Change, No.55: 395-407. Mui, K.W. and Chan, W.T.(2003) Adaptive comfort temperature model of air-conditioned building in Hong Kong, Building and Environment, No.38: 837-852. Nicol, F. and Roaf, S. (2005) Post-occupancy evaluation and field studies of thermal comfort, Building Research & Information, No.33(4): 338-346. Nicol, J.F. and Humphrey, M.A. (2002) Adaptive thermal comfort and sustainable thermal standards for buildings, Energy and Buildings, No.34: 563-572. Nicol, J.F., Raja, I.A., Allaudin, A. and Jamy, G.N.(1999) Climatic variations in comfortable temperatures: the Pakistan projects, Energy and Buildings, No.30:261-279. Olesen, B.W. and Brager, G.S.(2004) A better way to predict comfort, ASHRAE Journal, No.46(8):20-26. Yamtraipt, N., Khedari, J. and Hirunlabh, J.(2005) Thermal comfort standards for air conditioned buildings in hot and humid Tailand considering additional factors of acclimatization and education level, Solar Energy, No.78: 504-517. Zhang, H., Arens, E., Fard, S.A., Huizenga, C., Paliaga, G., Brager, G. and Zagreus, L.(2007) Air movement preferences observed in office buildings, International Journal of Biometeorology, No.51:349-360.

138