主要内容

52
主主主主 1 主主主主主主主 2 主主主主主主主主主 3 主主主主主主主主主主

Upload: knox-scott

Post on 30-Dec-2015

28 views

Category:

Documents


4 download

DESCRIPTION

主要内容. 1 钢液的物理性质 2 熔渣的物理化学性质 3 熔渣与钢液之间的反应. 1 钢液的物理性质. 一 钢的密度 单位体积钢液所具有的质量,常用符号 ρ 表示,单位通常用 kg/m 3 。 影响钢液密度的主要因素:温度和钢液的化学成分 固体纯 铁密度: 7880kg/m 3 1550℃ 时液态的密度: 7040kg/m 3 钢的变化与纯铁类似。. 钢液密度随温度 T (单位为℃) 的变化 : ρ =8523-0.8358 ( T +273 ) 成分对钢液密度的影响 : ρ 1600℃ =ρ 0 1600℃ -210[C] % -164[Al] % - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 主要内容

主要内容1 钢液的物理性质2 熔渣的物理化学性质3 熔渣与钢液之间的反应

Page 2: 主要内容

1 钢液的物理性质一 钢的密度

单位体积钢液所具有的质量,常用符号 ρ表示,单

位通常用 kg/m3。

影响钢液密度的主要因素:温度和钢液的化学成分

固体纯铁密度: 7880kg/m3

1550℃ 时液态的密度: 7040kg/m3

钢的变化与纯铁类似。

Page 3: 主要内容

钢液密度随温度 T (单位为℃)的变化:

ρ=8523-0.8358 ( T+273 )

成分对钢液密度的影响:

ρ1600℃=ρ01600℃-210[C]%-164[Al]%

-60[Si]%-550[Cr]%-7.5[Mn]%

+ 43[W]%+6[Ni]%

Page 4: 主要内容

铁碳熔体的密度( kg/m3 )[C]/%

密度1500℃ 1550℃ 1600℃ 1650℃ 1700℃

0.00 7.16 7.04 7.03 7.00 6.93

0. 10 6.98 6.96 6.95 6.89 6.81

0.20 7.06 7.01 6.97 6.93 6.81

0.30 7.14 7.06 7.01 6.98 6.82

0.40 7.14 7.05 7.01 6.97 6.83

0.60 6.97 6.89 6.81 6.80 6.70

0.80 6.86 6.78 6.73 6.67 6.57

1.00 6.78 6.70 6.65 6.59 6.50

1.20 6.72 6.64 6.61 6.55 6.47

1.60 6.67 6.57 6.54 6.52 6.43

Page 5: 主要内容

二 钢的熔点钢的熔点:钢完全转变成均一液体状态时的温度,或

是冷凝时开始析出固体的温度。

钢的熔点的计算经验公式

T 熔 =1538-90w[C]%-28w[P]%-40w[S]%-17w[Ti]%

-6.2w[Si]%-2.6w[Cu]%-1.7w[Mn]%-2.9w[Ni]%

-5.1w[Al]%-1.3w[V]%-1.5w[Mo]%-1.8w[Cr]%

-1.7w[Co]%-1.0w[W]%-1300w[H]%-90w[N]%

Page 6: 主要内容

- 100w[B]%-65w[O]%-5w[Cl]%-14w[As]%

T 熔 =1536-78w[C]%-34w[P]%-30w[S]%-7.6w[Si]%

-5.0w[Cu]%-4.9w[Mn]%-3.1w[Ni]%-1.3w[Cr]%

- 3.6w[Al]%-2.0w[V]%-2.0w[Mo]%-2.0w[V]%

-18w[Ti]%

Page 7: 主要内容

三 钢液的黏度黏度:各种不同速度运动的液体各层之间所产生的内摩擦力。黏度的表示形式

( 1 )动力黏度,用符号 µ 表示;单位为 Pa•s

(N•s/m2 , 1 泊 =0.1Pa•s); ( 2 )运动黏度,常用符号 ν 表示,即: ν=μ/ρ m2/s

钢液 1600 ℃ 黏度 0.002 ~ 0.003Pa•s ;纯铁液 1600 ℃ 黏度 0.0005Pa•s 。

Page 8: 主要内容

影响钢液黏度的因素: ( 1 )温度 温度升高,黏度降低。 ( 2 )成分 碳对钢液黏度的影响非常大 硅、锰、镍含量增加,钢液黏度降低 钛、钨、钒、钼、铬含量增加,钢液的黏度增

加( 3 )钢中非金属夹杂物的含量 含量增多,黏度增加,

流动性变差

Page 9: 主要内容

温度高于液相线 50℃ 时,碳含量对钢液黏度的影响

Page 10: 主要内容

四 钢液的表面张力钢液的表面张力:使钢液表面产生自发缩小倾向的力,用符号σ表示,单位为 N/m。影响钢液表面张力的因素:

( 1 )温度 钢液的表面张力是随着温度的升高而增大。

( 2 )钢液成分 溶质元素对纯铁液表面张力影响程度

取决于它的性质与铁的差别大小。如果溶质元素的性质与铁相近,则对纯铁液的表向张力影响较小,反之则就较大。

( 3 )钢液的接触物

Page 11: 主要内容

合金元素对熔铁表面张力的影响

Page 12: 主要内容

硫和氧对铁液表面张力的影响

Page 13: 主要内容

液相线以上 50℃ ,碳对铁碳熔体表面张力影响

Page 14: 主要内容

2 熔渣的物理化学性能 一 熔渣的作用、来源、分类和组成( 1 )作用

控制钢液的氧化、还原反应;脱除磷、硫等杂质元素,吸收夹杂物;防止钢液的吸气和散热;稳定电弧燃烧;电渣重熔时,熔渣是电阻发热体;做保护渣,可减少氧化,防止散热,提高铸坯质量。

Page 15: 主要内容

( 2 )来源炼钢过程有目的加入的造渣材料,如石灰、石灰石、萤石、硅石、铁矾土及火砖块。钢铁材料中 Si 、 Mn 、 P 、 Fe等元素的氧化产物。冶炼过程被侵蚀的炉衬耐火材料。

Page 16: 主要内容

( 3 )熔渣的分类与组成类别 化学成分 转炉中组成 电炉中组成

酸性氧化渣

CaO+FeO+MnO

SiO2 P2O5

50

50 1~4

50

50 0

碱性氧化渣

CaO/SiO2

CaO FeO

MnO MgO

3.0~4.5

35~55 7~30

2~8 2~12

2.5~3.5

40~50 10~25

5~10 5~10

碱性还原渣(白渣)

CaO/SiO2

CaO CaF2

Al2O3 FeO

MgO CaC2

2.0~3.5

50~55 5~8

2~3 <0.5

<10 <1

Page 17: 主要内容

类别 冶金反应特点

酸性氧化渣[C] 、 [Si] 、 [Mn] 氧化缓慢;不能脱 P 、S ;钢水中 [O] 较低

碱性氧化渣[C] 、 [Si] 、 [Mn] 迅速氧化;能较好脱

P ;能脱去 50% 的 S ;钢水中 [O] 较高。

碱性还原渣(白渣)

脱 S 能力强;脱氧能力强;钢水易增碳;钢水易回磷;钢水中 [H] 增加;钢水中[N] 增加

Page 18: 主要内容

二 熔渣的化学性质 ❀ 碱度 1 )熔渣碱度

熔渣中碱性氧化物浓度总和与酸性氧化物浓度总和之比,常用符号 R 表示。

炉料中 w[P]<0.30% 时

0.30%≤w[P] < 0.60% 时

2SiOw

CaOwR

522 OPwSiOw

CaOwR

Page 19: 主要内容

酸性渣: R<1.0

又叫长渣:渣中 SiO2含量高,高温下可拉成细丝,冷却后

呈黑亮色玻璃状。碱性渣: R>1.0 (又叫短渣) 炼钢熔渣 R≥3.0

炼钢熔渣中含有不同数量的碱性、中性和酸性氧化物,它们酸、碱性的强弱可排列如下:

CaO > MnO > FeO > MgO > CaF2 > Fe2O3 > Al2O3 > TiO2 > SiO2 > P2O5

碱性 中性 酸性

Page 20: 主要内容

2 )过剩碱碱性氧化物全都是等价地确定出酸性氧化物对碱性氧化物的强度,并假定两者是按比例结合,结合以外的碱性氧化物的量表示方法

过剩碱 =NCaO+NMgO+NMnO-2NSiO2-3NP2O5 -NFe2O3-NAl2O3

实质:实际上是用 O2-的摩尔数来表示熔渣的碱度 碱性氧化物离解产生 O2- ,酸性氧化物则消耗 O2- 。

Page 21: 主要内容

❀ 氧化性 1 )熔渣的氧化性指一定温度下,单位时间内熔渣向钢液供氧的数量。在其他一定的情况下,熔渣的氧化性决定了脱磷、脱碳以及夹杂物的去除等。

由于氧化物分解后不同,只有( FeO )和( Fe2O3)

才能向钢中传氧,而( Al2O3)、( SiO2)、( Mg

O )、( CaO )等不能传氧。

Page 22: 主要内容

2 )熔渣氧化性的表示方法

熔渣的氧化性通常是用∑ w ( FeO ) % 表示, 包括

( FeO )本身和 Fe2O3折合成( FeO )两部分。

将 Fe2O3折合成 FeO 有两种方法

全氧折合法

全铁折合法

%32%% )O(Fe1.35(FeO)(FeO) www

%32%% )O(Fe90.0(FeO)(FeO) www

Page 23: 主要内容

注:通常按全铁法将 Fe2O3折算成 FeO (原因是

取出的渣样在冷却的过程中,渣样表面的低价铁有一

部分被空气氧化成高价铁,即 FeO 氧化成 Fe3O4 ,因

而使分析得出的 Fe2O3 量偏高,用全铁法折算,可抵

消此误差)。

Page 24: 主要内容

熔渣氧化性用氧化铁的活度来表示显得更精确。部分氧化铁会以复杂分子形式存在,不能直接参与反应,氧化铁的浓度反映不出实际参加反应的有效浓度。

在 1600℃下,由实验测定在纯 FeO 渣中,金属铁液

中溶解的 [%O] 饱和 =0.23 。 [%O]饱和与温度间有着

下列关系:

饱和FeO [%O]

[%O]a

T

6320734.2]Olg[% 饱和

Page 25: 主要内容

[%O] 可以应用氧浓度电池直接测出来。式 只适用于铁液中除氧外而无其他的杂质元素的情况,对于钢液而言,该式就不适合了。

熔渣对钢液的氧化能力一般是用钢液中与熔渣相平衡的氧含量和钢液中实际氧含量之差来表示,即:

实钢渣 ]O[%]O[%]O[%

Page 26: 主要内容

3 )炉渣氧化性在炼钢过程中的作用影响化渣速度和炉渣黏度。

渣中 FeO 能促进石灰溶解,加速化渣,改善炼钢反应

动力学条件,加速传质过程;渣中 Fe2O3和碱性氧化物

反应生成铁酸盐,降低熔渣熔点和粘度,避免炼钢渣“返干”。影响熔渣向熔池传氧、脱磷和钢水的含氧量。

低碳钢水含氧量明显受熔渣氧化性的影响,当钢水含

Page 27: 主要内容

碳量相同时,熔渣氧化性强,则钢水含氧量高,且有利于脱磷。 影响铁合金和金属收得率及炉衬寿命。

炉渣氧化性越强,铁合金和金属收得率越低;熔渣氧化性强,炉衬寿命降低。

Page 28: 主要内容

三 熔渣的物理性质 ( 1 )熔渣的熔点

熔渣的熔化温度:固态渣完全转化为均匀液态时的温度;熔渣的凝固温度:液态熔渣开始析出固体成分时的温度。熔渣的熔化温度与熔渣的成分有关,一般说来,熔渣中高熔点组元越多,熔化温度越高。

Page 29: 主要内容

熔渣中常见的氧化物的熔点化合物 熔点 /℃ 化合物 熔点 /℃

CaO 2600 MgO·SiO21557

MgO 2800 2MgO·SiO21890

SiO21713 CaO·MgO·SiO2

1390

FeO 1370 3CaO·MgO·2SiO21550

Fe2O31457 2CaO·MgO·2SiO2

1450

MnO 1783 2FeO·SiO21205

Al2O32050 MnO·SiO2

1285

Page 30: 主要内容

化合物 熔点 /℃ 化合物 熔点 /℃

CaF21418 2MnO·SiO2

1345

CaO·SiO21550 CaO·MnO·SiO2

>1700

2CaO·SiO22130 3CaO·P2O5

1800

3CaO·SiO2>2065 CaO·Fe 2O3

1220

3CaO·2SiO21485 2CaO·Fe 2O3

1420

CaO·FeO·SiO21205 CaO·2Fe 2O3

1240

Fe2O3·SiO21217 CaO·2FeO·SiO2

1205

Page 31: 主要内容

( 2 ) 熔渣的黏度影响熔渣黏度的因素

( 1 )熔渣的成分

一般来讲,在一定的温度下,凡是能降低熔渣熔点

成分,在一定范围内增加其浓度,可使熔渣黏度降低;

反之 , 则使熔渣黏度增大。

在酸性渣中提高 SiO2含量时,导致熔渣黏度升高,

相反,提高 CaO 含量,会使黏度降低 。

Page 32: 主要内容

在碱性渣中, CaO超过 40~50% 后,黏度随 CaO 含

量的增加而增加; SiO2在一定范围内增加,能降低碱

性渣的黏度,但 SiO2含量超过一定值时会使熔渣变稠;

增加 FeO 含量,渣黏度显著降低;碱性渣中 MgO 浓

度超过 9 ~ 10% 时,熔渣变黏; Al2O3具有稀释碱性

渣的作用; CaF2本身熔点较低,它能降低熔渣的黏度。

Page 33: 主要内容

( 2 )熔渣中的固体熔点

熔渣中悬浮的少量尺寸大的颗粒(直径达几毫米),

对熔渣黏度影响不大;而尺寸较小( 10-3-10-2mm )

数量多的固体颗粒呈乳浊液状态,使熔渣黏度增加。

( 3 )温度。一般情况下,温度升高,熔渣的黏度降

低。

Page 34: 主要内容

熔渣和钢水的黏度值物质 温度(℃) 黏度( Pa·s )水 25 0.00089

铁水 1425 0.0015

钢水 1595 0.0025

稀熔渣 1595 0.0020

黏度中等渣 1595 0.020

稠熔渣 1595 0.20

FeO 1400 0.030

CaO 接近熔点 <0.050

SiO2 1942 1.5×104

Al2O3 2100 0.05

Page 35: 主要内容

( 3)熔渣的密度熔渣的密度决定熔渣所占据的体积大小及钢液液滴在渣中的沉降速度(渣滴在钢液中的上浮速度)。

固体炉渣密度的近似计算式:

其中: ρi为各化合物的密度;

wi为渣中各化合物的质量百分数, % 。

iiw 渣

Page 36: 主要内容

化合物 密度 化合物 密度 化合物 密度

Al2O33.97 MnO 5.40 V2O3

4.87

Na2O 2.27 P2O52.39 ZrO2

5.56

CaO 3.32 Fe2O35.20 CaF2

2.80

CeO27.13 FeO 5.90 FeS 4.58

Cr2O35.21 SiO2

2.32 CaS 2.80

MgO 3.50 TiO24.24

熔渣中化合物的密度

Page 37: 主要内容

1400℃时熔渣的密度与组成的关系:

熔渣的温度高于 1400℃ 时 , 可表示为 :

一般液态碱性渣的密度为 3000kg/m3,固态碱性渣的密度为 3500kg/m3 , FeO > 40%的高氧化性的密度为 4000kg/m3,酸性渣的密度一般为 3000kg/m3。

3

%32%52%%

%32%%%2

010

)(402.0)(48.0)(367.0)(237.0

)(35.0)(204.0)(286.0)(45.01

OAlwOPwMgOwMnOw

OFewFeOwCaOwSiOw

100

1400700 T

渣渣

Page 38: 主要内容

( 4)熔渣的表面张力氧化渣( 35~ 45%CaO, 10~ 20%SiO2 , 3 ~ 7%Al2O3 ,

8 ~ 30%FeO, 2 ~ 8%P2O5, 4 ~ 10%MnO, 7 ~

15%MgO)的表面张力为 0.35~ 0.45N/m

还原渣( 55~ 60%CaO, 20%SiO2 , 2 ~ 5%Al2O3 , 8 ~

10%MgO, 4 ~ 8%CaF2)表面张力为 0.35~ 0.45 N/m

钢包处理合成渣( 55%CaO, 20~ 40%Al2O3 , 2 ~

15%SiO2 , 2 ~ 10%MgO)的表面张力为 0.4~ 0.5N/m

Page 39: 主要内容

不同熔体的表面张力熔 体 测定温度

表面张力N/m

熔 体 测定温度℃

表面张力N/m

CaO

FeO

Al2O3

SiO2

P2O5

MnO·SiO2

CaO·SiO2

1500

1400

2050

1500

400

1570

1570

0.586

0.584

0.690

0.295

0.054

0.415

0.400

熔 渣

钢 液

(.3%C)

纯铁液

1500

1500

1550

1183

1470

327

0.3-0.8

~ 1.5

1.7-1.9

1.103

1.615

0.473

Page 40: 主要内容

影响熔渣表面张力的因素:温度和成分。

熔渣的表面张力一般是随着温度的升高而降低,但高

温冶炼时,温度的变化范围较小,因而影响也就不明

显。

SiO2 和 P2O5具有降低 FeO熔体表面张力的功能,而

Al2O3则相反。 CaO一开始能降低熔渣的表面张力,

但后来则是起到提高的作用。 MnO的作用与 CaO类似。

Page 41: 主要内容

熔渣体系表面张力的计算(用表面张力因子近似计

算)

式中 : - 熔渣的表面张力, N/m ;

- 熔渣组元 i 的摩尔分数;

- 熔渣组元 i 的表面张力因子。

ii N气渣

气渣

iiN

Page 42: 主要内容

3 熔渣与钢液之间的反应 一 渣量在炼钢过程中的作用

渣量大小是控制钢中杂质的重要参数之一。

渣量大时将

1 ) 降低钢中合金元素的利用率

2 )提高杂质的去除率

3 )降低炉子的热利用率

Page 43: 主要内容

不同原材料和冶炼方法对炉渣提出不同要求,但是应

考虑如下内容:

1 )应该有合适的碱度,以保护炉衬、减少侵蚀量,

保持高的脱磷、脱硫能力;

2 )将钢液中的磷、硫降到符合要求的含量时所需要

的必要渣量和杂质去除率;

3 )要保证渣成分和渣量,充分利用合金元素利用率。

Page 44: 主要内容

渣量的确定

钢中元素的氧化生成物+造渣材料(石灰、萤石

等)+耐火材料带入 1 )初渣量:炉内初期形成的渣量,与钢中元素氧化物

的数量有关

每吨钢液中元素氧化生成氧化物的数量 Q 渣为:

][88.1][67.1][47.1][29.2

]Δ[281]Δ[481]Δ[291]Δ[142]kg[

AlTiVP

Fe.Cr.Mn.Si.Q

kg/kg 钢液

Page 45: 主要内容

2 )渣中 ΣFeO 量—( FeO+Fe2O3),和很多因素有关

( [C] 、碱度、熔池温度等) ❉ 当 [C] > 0.1% 时,转炉吹炼末期的氧化铁总量为:

❉ 对于任何炉种的氧化渣、特别是低碳钢( [C]≤0.05% )的钢液,氧化铁为:

25.1101][

3.0

)(%

)(%4 26

2

tCSiO

CaOFeO

][

9.012

CFeO

Page 46: 主要内容

3 ) Q 石灰 - 造渣材料中石灰的加入量,与初始硅含量、炉

渣碱度等有关

其中: R- 炉渣碱度

(%SiO2)- 石灰中 (%SiO2) 的含量,如 3%代入 0.03

△[Si]- 钢铁料中硅的平均氧化含量,以 0.1% 为 1

单位 ,如 0.5%代入 5

))(%1(1

][14.2

2SiOR

RSiQ

石灰 kg/1000kg 钢液

Page 47: 主要内容

渣中杂质含量与渣量的关系

式中:

[E]- 钢液中残存的元素含量, kg/100kg

ΣE- 原始状态下钢、渣中元素 E 的含量, kg/100kg

Q 渣 -100kg 钢液的炉渣重量, kg

LE- 渣、钢间元素的分配系数,和渣成分有关

渣QL

EE

E

100

100][ kg/1000kg 钢液

Page 48: 主要内容

已知:炼钢原料带入的磷含量为 [P % ] 料 =0.06%,脱

硅量为 Δ[Si % ] = 0.3%,渣中 (SiO2 % ) = 14%,

(CaO % ) = 36%, (ΣFe%)=20% , T=1873K

求: 1 ) 炉渣碱度 R 、 渣量 Q 渣、石灰加入量 Q

石灰(石灰中 SiO2 = 3%)

2 )渣中 (FeO % ) 、钢中平衡磷含量 [P % ] 平

提示:磷的分配系数 ]0.24)lg(%7)lg(%5.222350

exp[10 CaOFeT

LP

Page 49: 主要内容

解:以 1000kg 钢液为基准进行计算 571.2

14

36

)(SiO

(CaO%)

2

Rkg/1000kg 钢液

486.1803.0)571.21(1

571.2314.2

%))(1(1

][%14.2

2

石灰石灰= SiOR

RSiQ

石灰石灰渣渣 )SiO(][14.2)SiO( 22 QSiQ 渣Q

渣QL

EE

E

100

100][ kg/1000kg 钢液

Page 50: 主要内容

二 渣量与脱氧的关系脱氧剂→ [O] 、( FeO )还原期用硅铁脱氧时,硅铁的加入量计算

1 )脱除渣中 (FeO)消耗的硅铁量

[Si] + 2(FeO) = (SiO2) + 2[Fe] (★)

反应达到平衡时, [Si] 减少和渣内 (FeO) 减少关系为: 144

28

Q(FeO)(FeO)

[Si][Si]

渣平原

平加

加入的硅量和平衡的硅量

为渣量的百分数

渣中原始 FeO 和平衡的 FeO 含量

( 1 )

Page 51: 主要内容

由反应式(★)知:按炉渣共存理论计算有:

将( 1 )、( 2 )合并得:

2][2

FeO

SiOFeO aSi

ak

)(5.05.1323222)( OAlOFeSiOCaFMnOFeOCaO nnnnnnnn 自由

FeO

SiOFeO kSi

aa

][2

nSik

aFeO

FeO

SiO

2/1

][72)( 2

平平 ( 2 )

平平

原渣加 ][][

72)(1944.0][

2/1

2 SinSik

aFeOQSi

FeO

SiO

( 3 )

Page 52: 主要内容

2 )脱除钢中 [O]消耗的硅铁量

[Si] + 2[O] = (SiO2)

当反应达到平衡时, [Si] 和 [O] 的数量关系为:

所以:

2平平

SiO

[O][Si]2

akO

平O平

SiO原

o加 [Si]

[Si][O]875.0[Si] 2

k

a

Ok

a

SiO平 [Si]

[O] 2

0.87532

28

[O][O]

[Si][Si]

Δ[O]

Δ[Si]

平原

平O加

( 4 )

平o加 [Si][Si][Si][Si] 加

总加总加硅量 ( 5 )