materials science (tims), university of tsukuba, 11--1, tennodai, tsukuba, ibaraki 305-8571, japan...

Post on 11-Mar-2018

220 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

S1

Electronic Supplementary Information

Title:

Efficient synthetic method for organometallic radicals: Structures and properties of gold(I)–

(nitronyl nitroxide)-2-ide complexes

Authors:

Shuichi Suzuki,*ab Sayaka Kira,a Masatoshi Kozaki,a Masaki Yamamura,c Toru Hasegawa,c

Tatsuya Nabeshima,c Keiji Okada*a

Affiliation: aGraduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Osaka 558-8585,

Japan bGraduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531,

Japan cGraduate School of Pure and Applied Sciences and Tsukuba Research Center for

Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba,

Ibaraki 305-8571, Japan

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2017

S2

Table of Contents

UV-vis spectra of NN-Au-P complexes (Fig. S1–4) p. S3−S4

MO-interaction diagram of transition 1, 2 for NN-Au-1 (Fig. S5) p. S5

MO-interaction diagram of transition 1, 2 for NN-Au-4 (Fig. S6) p. S6

MO-transitions 1,2 contributing for the longest absorption of NN-H (Fig. S7) p. S7

ESR spectra of NN-Au-P complexes (Fig. S8–S12) p. S8–S10

Calculated spin density distribution of NN-Au-P complexes (Fig. S13) p. S11

Cyclic voltammograms of NN-Au-P complexes (Fig. S14) p. S12

Reference p. S13

S3

Fig. S1. Absorption spectrum of NN-Au-2 in CH2Cl2.

Fig. S2. Absorption spectrum of NN-Au-3 in CH2Cl2.

300 400 500 600 700Wavelength / nm

0

0.5

/ 104

M–1

cm

–1

300 400 500 600 700Wavelength / nm

0

0.5

1

ε / 1

04 M

–1 c

m–1

S4

Fig. S3. Absorption spectrum of NN-Au-5 in CH2Cl2.

Fig. S4. Absorption spectrum of NN-Au-6 in CH2Cl2.

300 400 500 600 700Wavelength / nm

0

0.5

1

ε / 1

04 M

–1 c

m–1

300 400 500 600 700Wavelength / nm

0

0.5

1

ε / 1

04 M

–1 c

m–1

S5

Fig. S5. MO-interaction diagram for NN-Au-1.S1 a) for α-orbitals, b) for β-orbitals.

S6

Fig. S6. MO-interaction diagram for NN-Au-4.S1 a) for α-orbitals, b) for β-orbitals.

S7

Fig. S7. MO-transitions 1,2 contributing for the longest absorption of NN-H.S1 The calculated longest wavelength and the transition coefficients were as follows: NN-H (43 α-orbitals and 42 β-orbitals), 447.2 nm (f = 0.01), transition 1: 43α → 44α (c = 0.556), 42β → 43β (c = 0.669). For the strong absorption around 300 nm was calculated: 283.1 nm (f = 0.24), 43α → 44α (c = 0.741), 42β → 43β (c = -0.647).

S8

Fig. S8. Observed (in CH2Cl2: solid line) and simulated (red dashed line) ESR spectra of

NN-Au-1.

Fig. S9. Observed (in CH2Cl2: solid line) and simulated (red dashed line) ESR spectra of

NN-Au-3.

329 330 331 332 333 334Magnetic Field / mT

330 331 332 333 334 335Magnetic Field / mT

S9

Fig. S10. Observed (in CH2Cl2: solid line) and simulated (red dashed line) ESR spectra of

NN-Au-4.

Fig. S11. Observed (in CH2Cl2: solid line) and simulated (red dashed line) ESR spectra of

NN-Au-5.

330 331 332 333 334 335Magnetic Field / mT

330 331 332 333 334 335Magnetic Field / mT

S10

Fig. S12. Observed (in CH2Cl2: solid line) and simulated (red dashed line) ESR spectra of

NN-Au-6.

330 331 332 333 334 335Magnetic Field / mT

S11

Fig. S13. Spin density distributions of (a) NN-Au-1 (b) NN-Au-2 (c) NN-Au-3, (d) NN-Au-4,

(e) NN-Au-5, and (f) NN-Au-6 calculated by Gaussian 09 using at the UB3PW91 level of

theory with 6-31G(d) basis set for C, H, N, O, P, and S atoms, and LANLSDZ basis set for

Au atom.S1

S12

Fig. S14. Cyclic voltammograms of (a) NN-Au-1, (b) NN-Au-2, (c) NN-Au-3, (d) NN-Au-4,

and (e) NN-Au-6 in 1,2-dichloroethane.

V vs Fc/Fc++0.4 +0.2 0 –0.2 –0.4

a)

b)

c)

d)

e)

S13

Reference

(S1) Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.

Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.

A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J.

Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.

Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.

N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari,

A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam,

M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,

R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R.

L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.

Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J.

Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

top related