april, 8-12, 2009 p.1 海大陳正宗終身特聘教授 bipolar coordinates, image method and method...

39
April, 8-12, 2009 p.1 海海海海海海海海海海海 Bipolar coordinates, image method and method of fundamental solutions Jeng-Tzong Chen Department of Harbor and River Engineering, National Taiwan Ocean University 15:30-15:50, April 10, 2009 ICCES 09 in Phuket, Thailand

Upload: kelley-dalton

Post on 18-Dec-2015

238 views

Category:

Documents


1 download

TRANSCRIPT

April, 8-12, 2009 p.1海大陳正宗終身特聘教授

Bipolar coordinates, image method and method of fundamental solutions

Jeng-Tzong Chen

Department of Harbor and River Engineering,National Taiwan Ocean University

15:30-15:50, April 10, 2009

ICCES 09 in Phuket, Thailand

April, 8-12, 2009 p.2海大陳正宗終身特聘教授

Prof. Wen Hwa Chen 60th birthday symposium

My Ph.D. Committeemember

April 8-12, 2009 p.3海大陳正宗終身特聘教授

Outline

Introduction

Problem statements

Present method MFS (image method) Trefftz method

Equivalence of Trefftz method and MFS

(2-D and 3-D annular cases)

Numerical examples

Conclusions

April 8-12, 2009 p.4海大陳正宗終身特聘教授

Trefftz method

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

1( )

TN

j jj

u x c

j is the jth T-complete function

ln , cos sinm mm and m

exterior problem:

April 8-12, 2009 p.5海大陳正宗終身特聘教授

MFS

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

1( ) ( , )

MN

j jj

u x w U x s

( , ) ln , ,jU x s r r x s j N

Interior problem

exterior problem

April 8-12, 2009 p.6海大陳正宗終身特聘教授

Trefftz method and MFS

Method Trefftz method MFS

Definition

Figure caption

Base , (T-complete function) , r=|x-s|

G. E.

Match B. C. Determine cj Determine wj

( , ) lnU x s r

1( ) ( , )

MN

j jj

u x w U x s

( )2 0u xÑ = ( )2 0u xÑ =

D

u(x)

~x

s

Du(x)

~x

r

~s

is the number of complete functions TN

MN is the number of source points in the MFS

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

1( )

TN

j jj

u x c

j

April 8-12, 2009 p.7海大陳正宗終身特聘教授

b

a

New point of view of image locationinstead of Kelvin concept (Chen and Wu, IJMEST 2006)

1

1

)(cos)(1

ln

)(cos)(1

ln

),(

m

m

m

m

mRm

R

mR

mxU

'2

''

R a aR

a R R

'

R

bR

b

R

R

b 2

''

April 8-12, 2009 p.8海大陳正宗終身特聘教授

Numerical examples - convergence rate

Image method Trefftz methodConventional MFS

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

Best Worst

Collocation point

Source point

True source point

April 8-12, 2009 p.9海大陳正宗終身特聘教授

Equivalence of solutions derived by Trefftz method and image method (special MFS)

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

Trefftz method MFS

1, cos , sin

ln , cos , sin

0,1,2,3, ,

m m

m m

m m

m m

m

r f r f

r r f r f- -

= ¥L

ln ,jx s j N- Î

Equivalence

addition theorem

2-D 3-DTrue source

April 8-12, 2009 p.10海大陳正宗終身特聘教授

Key point

Addition theorem (Degenerate kernel)

2-D

RmR

m

RmRm

R

rm

m

m

m

),(cos1

ln

),(cos1

ln

ln

1

1

3-D

11 0

11 0

1 ( )!cos ( ) (cos ) (cos ) ,

( )!1

1 ( )!cos ( ) (cos ) (cos ) ,

( )!

nnm m

m n n nn m

nnm m

m n n nn m

n mm P P R

R n m R

r n m Rm P P R

n m

1, 02 , 1,2,...,m

mm

s( , )R q

R

r

rx( , )r f

x( , )r f

o

iU

eU

April 8-12, 2009 p.11海大陳正宗終身特聘教授

Annular cases (Green’s functions)

2-D

EABE 2009

xy

z

3-D

a

b

ab ),,( R

),( R

u1=0 u1=0u2=0

u2=0

True source

April 8-12, 2009 p.12海大陳正宗終身特聘教授

Numerical examples - case 1

(a) Trefftz method (b) Image method

Contour plot for the analytical solution (m=N).

fixed-fixed boundary (u=0)

m=20 N=20

10 terms

100 terms

Melnikov and Arman, 2001Computer unfriendly

April 8-12, 2009 p.13海大陳正宗終身特聘教授

Trefftz solution Image solution

Annular

circle

Annular sphere

Analytical solutions

1

4 3where i

i

b bw

R a

Addition

theorem

Addition

theorem

April 8-12, 2009 p.14海大陳正宗終身特聘教授

Analytical and numerical approaches to determine the strength

2-D 3-D

0 10 20 30 40 50

N

-12

-8

-4

0

c(N

) &

d(N

)

an a ly tic c (N )n u m erica l c (N )an a ly tic d (N )n u m erica l d (N )

0 2 4 6 8 10

N

0

0.02

0.04

0.06

0.08

0.1c (N ) a n d d (N )

A n a ly tica l c (N )N u m er ica l c (N )A n a ly tica l d (N )N u m er ica l d (N )

4 3 4 21

4 1 4

1( , ) {ln lim ( ln ln

2ln ( )ln ) ln }( ) ln

N

i iN

m

i i c d

G x x

c N d N

x x

x x x x

x x x xp

x x x x

- -®¥=

-

= - + - + -

- - - - + - + -

å4 3 4 2 4 1 4

1 4 3 4 2 4 1 4

1 1( , ) lim

4

( ) ( )1

Ni i i i

Ni i i i i

w w w wG x s

x s x s x s x s x s

c N d N

2

2

ln lnln ln( )

ln ln

R ac

RN bN

a a b

ln ln

n ln( )

l

b R

bd

aN

((

))

N R aa

b R b ac N

( )

(( )

)

N a b Rd

a

bN

b R a

April 8-12, 2009 p.15海大陳正宗終身特聘教授

Bipolar coordinates

Eccentric annulus A half plane with a hole An infinite plane with double holes

focus

April 8-12, 2009 p.16海大陳正宗終身特聘教授

Animation – eccentric case

2

The final images

terminate at the

focus

46

7

1

5

3

(0,0.75)

4 3 4 2 4 1 41

1( , ) ln lim ln ln ln ln

2

( ) ln ( ) ln ( ) ,

N

i i i

c

iN

d

iG x x x x x x

c N x d N x e N

c

true source

image sources

and c d focus

d

April 8-12, 2009 p.17海大陳正宗終身特聘教授

Animation - a half plane with a circular hole

1

2

3

4x

The final imagesterminate at thefocus

4 3 4 2 4 1 41

1( , ) ln lim ln ln ln ln

2

( ) ln ( ) ln ( ) ,

N

i i i

c

iN

d

iG x x x x x x

c N x d N x e N

d

c

image source

true source

and c d focus

April 8-12, 2009 p.18海大陳正宗終身特聘教授

Animation- an infinite plane with double holes

1

234

The final images terminate at the focus

1d 2d

Multipole expansion

1

1

2

2

4 3 4 2 4 1 4

11

2

12

1

2

1

( ) ( )

1( , ) {ln [ln ln ln ln ]

2

ln lim ln ln

( )ln (

m

n

l

l

li n

)N

i i i ii

M

f f

d d

M

j jM M

j j

d

G x x f Nx x x f Nx x

x x N xN

x

xd

1f2f

true source

1 2 and f f focus

image source

2dand1dMultipoles

April 8-12, 2009 p.19海大陳正宗終身特聘教授

Eccentric annulus

- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0 . 2 0 . 4 0 . 6 0 . 8 1- 1

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Image method (50+2 points)

u1=0u2=0 ),( R

a

b

April 8-12, 2009 p.20海大陳正宗終身特聘教授

A half plane with a circular hole

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Image method (40+2 points)

u1=0

u2=0

),( R

a

h

April 8-12, 2009 p.21海大陳正宗終身特聘教授

An infinite plane with double holes

ab

h

x

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Image method (20+4+10 point)

t1=0t2=0

April 8-12, 2009 p.22海大陳正宗終身特聘教授

Conclusions

The analytical solutions derived by the Trefftz method and MFS were proved to be mathematically equivalent for the annular Green’s functions (2D and 3D) after using addition theorem (degenerate kernel).

We can find final two frozen image points which are focuses in the bipolar coordinates.

The image idea provides the optimal location of MFS and only at most 4 by 4 matrix is required.

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz and MFS

5. Numerical examples6. Conclusions

April, 8-12, 2009 p.23海大陳正宗終身特聘教授

Thanks for your kind attentions

You can get more information from our website

http://msvlab.hre.ntou.edu.tw/

April 8-12, 2009 p.24海大陳正宗終身特聘教授

Optimal source location

0s

Ä

1s

e

2s

e

3s

Ä

4s

Ä

5s

e

6s

e

7s

Ä

8s

Ä

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

MFS (special case)Image method

Conventional MFS Alves CJS & Antunes PRS

April 8-12, 2009 p.25海大陳正宗終身特聘教授

Problem statements

a

b

Governing equation :

( )2 , ( ),G s x x s xd WÑ = - Î

BCs:

1. fixed-fixed boundary2. fixed-free boundary3. free-fixed boundary

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

April 8-12, 2009 p.26海大陳正宗終身特聘教授

Present method- MFS (Image method)

0s

Ä

1s

e

2s

e

3s

Ä

4s

Ä

5s

e

6s

e

7s

Ä

8s

Ä

2 2 2

4 4 4

6 6 6

8 8 8

4 2 4 2 4 2

4 4 4

inside

( , )

( , )

( , )

( , )

( , )

( , )i i i

i i i

s R

s R

s R

s R

s R

s R

1 1 1

3 3 3

5 5 5

7 7 7

4 3 4 3 4 3

4 1 4 1 4 1

outside

( , )

( , )

( , )

( , )

( , )

( , )i i i

i i i

s R

s R

s R

s R

s R

s R

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

April 8-12, 2009 p.27海大陳正宗終身特聘教授

MFS-Image group0s

ee1s

Ä

3s4s ÄÄ

00

0

0 0 0

1 0

0

01

0 0

1ln ( ) c

1ln ( ) c

( , )

(os ( )

,

os (

),

),m

m

m

m

aR m

s R

U s

Rb m b

a

Rb

m R

m

Rx

1 11 1

2

0

1 11

1 1 1

1

1

1 0

1

1ln ( ) cos (

1ln ( ) cos (

(

( ,

)

)

)

, )

m

m

m

m

aR

b

m

s

R mm R

R b bR

b R R

m R

R

U s x

22

1

2 2 2

2

22

1

2

22

0 0

1ln ( ) cos (

1ln ( ) cos

( ,

(

)

( , ))

)

m

m

m

m

Ra

R

m

s

b mm

m a

a R aR

R a R

U x b

R

s

44

1

2 2

44 4 02

1 1

4 4 4

44

1

4

( , )

1ln (

1ln ( ) cos

) co

(

s )

)

(( , )

m

m

m

m

Ra m

m a

a R a aR R R

R a R b

s R

Rb m

m bU s x

3 31 3

2 2

23 3 02

3 3 3

3

3 31 3

3 2

( , )

( , )1

ln ( ) cos (

1ln ( ) ( )

)

cos

m

m

m

m

bR m

m R

R b b bR R R

s R

U s xa

R mm R

b R R a

2s

2 2 2 2 21

1 5 4 32 2

0 0 0

2 2 2 2 21

2 6 4 22 2

0 0 0

2 2 2 2 210 0 0

3 7 4 12 2 2 2 2

2 2 2 2 210 0 0

4 8 42 2 2 2 2

, ........ ( )

, ....... ( )

, ... ( )

, ... ( )

i

i

i

i

i

i

i

i

b b b b bR R R

R R a R a

a a a a aR R R

R R b R b

b R b R b b R bR R R

a a a a aa R a R a a R a

R R Rb b b b b

( )4 3 4 2 4 1 41

1( , ) ln ln ln ln ln

2

N

m i i i ii

G x s x s x s x s x s x s- - -=

é ù= - - - + - - - - -åê ú

pë û

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

April 8-12, 2009 p.28海大陳正宗終身特聘教授

Analytical derivation

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

April 8-12, 2009 p.29海大陳正宗終身特聘教授

Numerical solution

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

a

b

April 8-12, 2009 p.30海大陳正宗終身特聘教授

Interpolation functions

a

b

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

April 8-12, 2009 p.31海大陳正宗終身特聘教授

Trefftz Method

PART 1

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

April 8-12, 2009 p.32海大陳正宗終身特聘教授

Boundary value problem

1 1u u=-2 2u u=-

PART 2

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

April 8-12, 2009 p.33海大陳正宗終身特聘教授

1u

2u11 uu

22 uu 1 0u =

2 0u =

PART 1 + PART 2 :

( )

( )

( )

1

1

0 01

( , )

1 1ln cos ,

2

1 1ln cos ,

2

1( ) ln ( cos ( sin

2

m

m

m

m

m m m mm m m m

m

G x s u u

R m Rm R

u xR

m Rm

u x p p p p ) m q q ) m

rq f r

p

r q f rp r

r r r f r r fp

¥

=

¥

=

¥ - -

=

= +

ì é ùï æ öï ê ú÷çï - - ³å ÷çï ê ú÷çè øï ê úï ë ûï=í é ùï æ öï ê ú÷çï - - <÷å çï ê ú÷ç ÷ï è øê úï ë ûïîì üï ïï é ù= + + + + +åí ýê úë ûïïî

ïïïþ

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

April 8-12, 2009 p.34海大陳正宗終身特聘教授

Equivalence of solutions derived by Trefftz method and MFS

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

Equivalence ( )

( )( )( )

0

0

0 0

ln ln ln

ln ln

ln ln

ln ln

b a R

a bp

p b R

b a

é ù- -ê úê úì ü -ï ïï ï ê ú=í ý ê úï ï - -ï ï ê úî þê ú-ê úë û

0 0

0

ln ln(2 ln ln )

( ) ln lnln ln( )(ln ln )

R a RN b

c N a a bb Rd Nb a

é ù-ê ú- +ì ü ê úï ï -ï ï =ê úí ý -ï ï ê úï ïî þ -ê ú

-ê úë û

April 8-12, 2009 p.35海大陳正宗終身特聘教授

The same

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

Equivalence of solutions derived by Trefftz method and MFS

April 8-12, 2009 p.36海大陳正宗終身特聘教授

Numerical examples-case 2

(a) Trefftz method (b) Image method

Contour plot for the analytical solution (m=N).

fixed-free boundary

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

m=20 N=20

April 8-12, 2009 p.37海大陳正宗終身特聘教授

Numerical examples-case 3

(a) Trefftz method (b) Image method

Contour plot for the analytical solution (m=N).

free-fixed boundary

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

m=20 N=20

April 8-12, 2009 p.38海大陳正宗終身特聘教授

Numerical and analytic ways to determine c(N) and d(N)

Values of c(N) and d(N) for the fixed-fixed case.

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

0 10 20 30 40 50

N

-12

-8

-4

0

c(N

) &

d(N

)

an a ly tic c (N )n u m erica l c (N )an a ly tic d (N )n u m erica l d (N )

ba

Rab

a

RNNc

lnln

lnlnlnln)(

2

2

ab

RbNd

lnln

lnln)(

April 8-12, 2009 p.39海大陳正宗終身特聘教授

Numerical examples- convergence

1. Introduction2. Problem statements3. Present method

4. Equivalence of Trefftz method and MFS

5. Numerical examples6. Conclusions

Pointwise convergence test for the potential by using various approaches.

0 2 4 6 8 10

m

-0 .02

-0.01

0

0.01

0.02

u (6 ,/3 )

Im a g e m e th o dT re fftz m e th o dC o n v en tio n a l M F S