bgscmc04exprob

Upload: sancloud

Post on 14-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 BGSCMC04ExProb

    1/32

    A Beginner's Guide to the Steel Construction Manual last modified: 11 AugExample Problem 4.1 by: TBQ

    Given: A lap splice is connected with (11) A325-X bolts as shown. Assume that the applied load consists of 40% dead load and 60% live load.

    db = 0.75 in% DL 40%% LL 60%

    bolts:3/4" diaA325-Xpretensionedin standard holes

    Class A faying surfaces

    Wanted: Determine the capacity of the connection based on bolt strength as specified below.Consider both LRFD and ASD.Express your results in terms of service load levels.

    a. Determine the slip capacity of the connection.b. Determine the bearing capacity of the connection.

    Solution:

    Results Summary: Computations follow

    Table of CapacitiesLRFD ASD

    Limit State f R n P s,eq R n/W P s,eq(k) (k) (k) (k)

    Slip 122 84.6 81.2 81.2

  • 7/30/2019 BGSCMC04ExProb

    2/32

    a. Slip Capacity - See specification J3.8

    m 0.35 (Class A Surfaces)Du 1.13h sc 1 (Standard Holes)T

    b 28 kips/boltNs 1r n 11.1 kips/boltNb 11 boltsR n 122 kips/connection

    LRFD ASDf = 1 W = 1.5f R n = 122 kips R n / W = 81 kips

    b. Bearing Capacity - See specification J3.6

    F nv 60 ksi (from Table J3.2) Ab 0.4418 in

    r n 26.5 kips/shear planeNs 1 shear planes/boltNb 11 boltsR n 292 kips/connection

    LRFD ASDf = 0.75 W = 2f R n = 219 kips R n / W = 146 kips

  • 7/30/2019 BGSCMC04ExProb

    3/32

    007

    ures no slipures no bolt shear failure

  • 7/30/2019 BGSCMC04ExProb

    4/32

    A Beginner's Guide to the Steel Construction Manual last modified: 11 AugExample Problem 4.2 by: TBQ

    Given: A splice plate connection is used to connect two WTs together as shown.The connection is subjected to axial tension, P.

    Assume that the load transferred consists of Dead Load (30%) and Seismic Load (70%).

    db = 0.75 in% DL 30%% E 70%

    bolts:3/4" diaA325-Xpretensionedin standard holes

    Class B faying surfaces

    Wanted: Determine the capacity of the connection based on bolt strength as specified below.Consider both LRFD and ASD.Express your results in terms of service load levels.

    a. Determine the slip capacity of the connection.b. Determine the bearing capacity of the connection.

    Solution:

    Results Summary: Computations follow

    Table of CapacitiesLRFD ASD

    Limit State f R n P s,eq R n/W P s,eq(k) (k) (k)

    Slip 435 410 290 367

  • 7/30/2019 BGSCMC04ExProb

    5/32

    a. Slip Capacity - See specification J3.8

    m 0.5 (Class B Surfaces)Du 1.13h sc 1 (Standard Holes)T

    b 35 kips/boltNs 2 shear planes/boltr n 39.6 kips/boltNb 11 boltsR n 435 kips/connection

    LRFD ASDf = 1 W = 1.5f R n = 435 kips R n / W = 290 kips

    b. Bearing Capacity - See specification J3.6

    F nv 60 ksi (from Table J3.2) Ab 0.4418 in

    r n 26.5 kips/shear planeNs 2 shear planes/boltNb 11 boltsR n 583 kips/connection

    LRFD ASDf = 0.75 W = 2f R n = 437 kips R n / W = 292 kips

  • 7/30/2019 BGSCMC04ExProb

    6/32

    007

    ures no slipures no bolt shear failure

    C5

    P s = 0.790 P s,equiv

  • 7/30/2019 BGSCMC04ExProb

    7/32

    A Beginner's Guide to the Steel Construction Manual last modified: 11 AugExample Problem 4.3 by: TBQ

    Given: A WT is bolted to a W section as part of a beam/brace connection as shown.The connection is subjected to axial tension, P. Bolt size, type, location, etc. areall given on the drawing. Assume that the load transfer consists of only Wind Load (100%).

    db = 0.75 in% W 100%

    bolts:3/4" diaA325-Npretensionedin standard holes

    Class A faying surfaces

    Wanted: Determine the capacity of the connection based on bolt strength as specified below.Consider both LRFD and ASD.Express your results in terms of comparable service level loads.

    a. Determine the slip capacity of the connection.b. Determine the bearing capacity of the connection.

    Solution:

    Results Summary: Computations follow

    Allowable Brace Force (at comparable service load levels)

    Part (a) Slip CriticalLRFD ASD

    (k) (k)Slip 41.1 43.9

  • 7/30/2019 BGSCMC04ExProb

    8/32

    P t = 0.6 P braceP v = 0.8 P brace

    ASCE 7 Load Combinations:

    The controlling load case is LRFD LC4 The controlling load case is ASD

    Composite load factor for LRFD: P u = 1.60 P s,equiv Composite load factor for ASD:

    a. Slip Critical Connection

    Tensile Rupture Limit State - Section J3.6

    F nt = 90 ksi (Table J3.2) Ab = 0.4418 in

    r n = 39.8 k/boltNb = 6 boltsR n = 239 k/connection

    LRFD ASDf = 0.75 W = 2f R n = 179 kips R n / W = 119 kipsP vs,eq < 112 kips P vs,eq < 119 kipsP brace < 186 kips P brace < 199 kips

    Slip Limit State - Section J3.8 and J3.9

    m 0.35 (Class B Surfaces)

    Du 1.13h sc 1 (Standard Holes)Tb 28 kips/boltNs 1 shear planes/boltr n 11.1 kips/boltNb 6 boltsR n 66.4 kips/connection

    LRFD ASD

    f = 1 W = 1.5

    W

    W

    WW

    bbu

    n

    n

    brace

    u

    n s

    nbracevs

    N T D R

    R P

    D Rk R P P

    90.080.0

    .05.1180.0

    bbu

    n

    nbrace

    bbu

    bracen snbracevu

    N T D R

    R P

    N T D P Rk R P P

    f

    f

    f f

    96.028.1

    96.0128.1

  • 7/30/2019 BGSCMC04ExProb

    9/32

    f R n = 66 kips R n / W = 44 kipsP brace = 41.1 kips P brace = 43.9 kips

    b. Bearing Connection

    Shear Rupture Limit State - Section J3.6

    F nv 48 ksi (from Table J3.2) Ab 0.4418 in

    r n 21.2 kips/shear planeNs 1 shear planes/boltNb 6 boltsR n 127 kips/connection

    LRFD ASDf = 0.75 W = 2

    f R n = 95.4 kips R n / W = 63.6 kipsPv,seq = 59.6 kips Pv,seq = 63.6 kipsP brace = 74.6 kips P brace = 79.5 kips

    Tension Rupture Limit State - Sections J3.6 & J3.7

    F nt = 90 ksi (Table J3.2) Ab = 0.4418 in

    r n = 39.8 k/boltNb = 6 bolts

    R n = 239 k/connection

    LRFD ASDf = 0.75 W = 2

    Without J3.9 reduction: Without J3.9 reduction:f R n = 179 kips R n / W = 119 kipsP ts,eq < 112 kips P ts,eq < 119 kipsP brace < 186 kips P brace < 199 kips

    With req'd J3.7 reduction: With req'd J3.7 reduction:

    nv

    bnt nb

    bb

    b

    nv

    nt nt bbb

    bbvnv

    nt nt bbnt btu

    F P F

    R P

    N A P

    F F

    F N A P

    N A f F F F N A F P P

    28.13.196.0

    80.06.13.196.0

    3.160.06.1

    f

    f f

    f f f

    bnv

    nt nb

    bnv

    nt nt b

    bbnt

    bts

    P F F R

    P

    A F F

    F P

    N A F P P

    80.03.160.0

    80.03.160.0

    .160.0

    W

    W

    W

  • 7/30/2019 BGSCMC04ExProb

    10/32

    P brace < 69.2 kips P brace < 73.8 kips

    nv

    nt

    nb

    F F

    R P

    28.196.0

    3.1 f

    nv

    nt

    n

    b

    F F

    R

    P 80.060.0

    3.1W

  • 7/30/2019 BGSCMC04ExProb

    11/32

    007

  • 7/30/2019 BGSCMC04ExProb

    12/32

    C4

    P s = 1.00 P s,equiv

    bb

    brace

    N P 6

  • 7/30/2019 BGSCMC04ExProb

    13/32

    bb

    b

    b

    bbv

    nv

    nt nt

    N A P

    N A f F F F 3

    W

    WW

  • 7/30/2019 BGSCMC04ExProb

    14/32

  • 7/30/2019 BGSCMC04ExProb

    15/32

    A Beginner's Guide to the Steel Construction Manual last modified: 24 SeptExample Problem 4.4a by: TBQ

    Given: A bracket is connected to a column flange as shown. Assume that the applied load is 50% D and 50% L.The bolt information is given on the drawing.

    db = 0.75 in% D 50%% L 50%

    bolts:3/4" diaA490-Npretensionedin standard holes

    Class A faying surfaces

    Wanted: Determine the capacity of the connection based on bolt strength as specified below.Consider both LRFD and ASD.Express your results in terms of service load levels.

    a. Determine the bearing capacity of the connection using the elastic method.b. Determine the bearing capacity of the connection using the IC method.

    Solution (a):

    Results Summary: Computations follow

    Bearing Capacity - Elastic Method

    LRFD ASD(k) (k)

    P s,eq < 32.9 30.7

    ASCE 7 Load Combinations:

    The controlling load case is LRFD LC2 The controlling load case is ASD

    Composite load factor for LRFD: P u = 1.40 P s,eq Composite load factor for ASD:

    b. Bearing Capacity - See specification J3.6

    F nv 60 ksi (from Table J3.2) Ab 0.4418 in

  • 7/30/2019 BGSCMC04ExProb

    16/32

    r n 26.5 kips/shear planeNs 1 shear planesr n 26.5 kips/bolt

    LRFD ASDf = 0.75 W = 2f R n = 19.9 kips R n / W = 13.3 kips

    Compute the coefficient that relates applied load to maximum bolt force:

    Let P = 10 k P x = 5.000 kd = 30 deg P y = -8.660 ke = 7.75 in M = Pe = 77.5 in-k

    Compute bolt geometry quantities:

    Bolt cx cy c Ix Iy

    (in) (in) (in) (in4) (in4)1 -1.75 4.5 4.83 8.95 1.352 1.75 4.5 4.83 8.95 1.353 -1.75 1.5 2.30 0.99 1.354 1.75 1.5 2.30 0.99 1.355 -1.75 -1.5 2.30 0.99 1.356 1.75 -1.5 2.30 0.99 1.357 -1.75 -4.5 4.83 8.95 1.358 1.75 -4.5 4.83 8.95 1.35

    39.76 10.82

    Ip = 50.58 in

    Compute the bolt forces:

    Bolt r px r py r mx r my r x r y r (k) (k) (k) (k) (k) (k) (k)

    1 -0.625 1.083 -3.046 -1.184 -3.671 -0.102 3.6722 -0.625 1.083 -3.046 1.184 -3.671 2.267 4.3143 -0.625 1.083 -1.015 -1.184 -1.640 -0.102 1.6434 -0.625 1.083 -1.015 1.184 -1.640 2.267 2.7985 -0.625 1.083 1.015 -1.184 0.390 -0.102 0.4036 -0.625 1.083 1.015 1.184 0.390 2.267 2.3007 -0.625 1.083 3.046 -1.184 2.421 -0.102 2.423

    8 -0.625 1.083 3.046 1.184 2.421 2.267 3.317-5.000 8.660 r max = 4.314

    C = P/r max = 2.318

    Using the coefficent, we can now compute the capacities using P = C*r max :

    LRFD ASD

  • 7/30/2019 BGSCMC04ExProb

    17/32

    r max = f R n 19.9 k/bolt r max = R n/W = 13.3P u < 46.1 kips P a < 30.7P s,eq < 32.9 kips P s,eq < 30.7

  • 7/30/2019 BGSCMC04ExProb

    18/32

    2007

    C2

    P s = 1.00 P s,eq

  • 7/30/2019 BGSCMC04ExProb

    19/32

  • 7/30/2019 BGSCMC04ExProb

    20/32

    k/bolt

    kips

    kips

  • 7/30/2019 BGSCMC04ExProb

    21/32

    A Beginner's Guide to the Steel Construction Manual last modified: 24 SeptExample Problem 4.4b by: TBQ

    Given: A bracket is connected to a column flange as shown. Assume that the applied load is 50% D and 50% L.The bolt information is given on the drawing.

    db = 0.75 in% D 50%% L 50%

    bolts:3/4" diaA490-Npretensionedin standard holes

    Class A faying surfaces

    Wanted: Determine the capacity of the connection based on bolt strength as specified below.Consider both LRFD and ASD.Express your results in terms of service load levels.

    a. Determine the bearing capacity of the connection using the elastic method.b. Determine the bearing capacity of the connection using the IC method.

    Solution (b):

    Results Summary: Computations follow LRFD(k)

    Bearing Capacity - IC Method Elastic P s,eq < 32.9IC P s,eq < 36.3

    LRFD ASD(k) (k)

    P s,eq < 36.3 33.8

    ASCE 7 Load Combinations:

    The controlling load case is LRFD LC2 The controlling load case is ASD

    Composite load factor for LRFD: P u = 1.40 P s,eq Composite load factor for ASD:

    b. Bearing Capacity - See specification J3.6

    F nv 60 ksi (from Table J3.2) Ab 0.4418 in

    r n 26.5 kips/shear plane

  • 7/30/2019 BGSCMC04ExProb

    22/32

    Ns 1 shear planesr n 26.5 kips/bolt

    LRFD ASDf = 0.75 W = 2f R n = 19.9 kips R n / W = 13.3 kips

    Compute the coefficient that relates applied load to maximum bolt force:

    d = 30 deg Dmax = 0.340 inR ult = 74.0 k

    Locate the IC relative to the bolt CGx y

    (in) (in) Computations for roIC -1.41 -1.14 atan( d) = 0.4823

    CG 0.00 0.00 r ox = 10.22 inLoad 7.75 6.00 r oy = 4.93 in

    These values found by computingr o = 11.35 in the intersection of two line whose

    slope we know and a point that eaCompute bolt geometry and deformation quantities: passes through.

    Bolt c xcg cycg cxic cyic c ic D(in) (in) (in) (in) (in) (in)

    1 -1.75 4.5 -0.341 5.636 5.65 0.302 1.75 4.5 3.159 5.636 6.46 0.343 -1.75 1.5 -0.341 2.636 2.66 0.144 1.75 1.5 3.159 2.636 4.11 0.225 -1.75 -1.5 -0.341 -0.364 0.50 0.036 1.75 -1.5 3.159 -0.364 3.18 0.177 -1.75 -4.5 -0.341 -3.364 3.38 0.188 1.75 -4.5 3.159 -3.364 4.62 0.24

    max = 6.46 0.34

    Compute the bolt forces:

    Bolt r r x r y r*cic(k) (k) (k) (in-k)

    1 71.9 -71.8 -4.3 406

    2 72.6 -63.4 35.5 4693 63.3 -62.8 -8.1 1684 69.2 -44.3 53.1 2855 33.0 24.1 -22.6 166 66.0 7.6 65.6 2107 66.8 66.5 -6.7 2268 70.3 51.3 48.1 325

    sums = -92.7 160.6 2105P = 185.48 185.48 185.48

  • 7/30/2019 BGSCMC04ExProb

    23/32

    Differences 0.00 0.00 0.00 Good

    r max = 72.6

    C = P/r max = 2.554

    Using the coefficent, we can now compute the capacities using P = C*r max :

    LRFD ASDr max = f R n 19.9 k/bolt r max = R n/W = 13.3P u < 50.8 kips P a < 33.8P s,eq < 36.3 kips P s,eq < 33.8

  • 7/30/2019 BGSCMC04ExProb

    24/32

    2007

    ASD(k)

    30.733.8

    C2

    P s = 1.00 P s,eq

  • 7/30/2019 BGSCMC04ExProb

    25/32

    -1.41 -1.140.00 0.007.75 6.00

    -1.75 4.501.75 4.50

    -1.75 1.50

    ch1.75 1.50

    -1.75 -1.501.75 -1.50

    -1.75 -4.501.75 -4.50

    -6.00

    -4.00

    -2.00

    0.00

    2.00

    4.00

    6.00

    8.00

    -4.00 -2.00 0.00 2.00 4.00 6.00 8.00 10.00

    Series1

  • 7/30/2019 BGSCMC04ExProb

    26/32

    k/bolt

    kips

    kips

  • 7/30/2019 BGSCMC04ExProb

    27/32

    A Beginner's Guide to the Steel Construction Manual last modified: 18 JanExample Problem 4.5 by: TBQ

    Given: The following data:

    Eccentric Load

    DL 50% P s,equivLL 50% P s,equiv

    Eccentricit 7 in

    Fy = 50 ksiFu = 65 ksidb = 0.875 in

    Ab = 0.6013 in^2Tb 39 kips

    Fnv = 48 ksi

    Fnt = 90 ksi

    Number of bolts, n b 8 bolts:number of rows 4 7/8" diaRow spacing 3 in A325-N

    pretensionedbf tf in standard holes

    Column: W14x61 10 0.645 inBracket: WT6x13 6.49 0.38 in Class A faying surfaces

    Wanted: Determine the capacity of the connection based on bolt strength as specified below. ConsidExpress your results in terms of comparable service level loads.

    part (a) use the SCM Case I methodpart (b) use the SCM Case II Method

    Solution:

    Solution Summary LRFD ASD(kips) (kips)

    a Case IShear limit 123.70 115.45Tension limit 77.35 48.75

    Controlling Value 77.35 48.75

  • 7/30/2019 BGSCMC04ExProb

    28/32

    part (a)

    Using SCM Case I (SCM page 7-10):

    Shear Strength of Bolts (J3.6)

    F nv 48 ksi Ab 0.6013 in^2r n = F nv Ab = R n / n b 28.9 k/shear planeShear Planes 1r n 28.9 k/bolt

    LRFD ASDr uv < r nuv = f r n r av < r nav = r n / Wvf v = 0.75 Wv =

    f v r n = 21.6 kips/bolt r n / Wv =

    P u,max < f v r n nb = 173.18 kips/connection P a,max = n b r n / Wv =CLF 1.40 CLFP s,eq < 123.70 kips/connection P s,eq