dcmachineunitii

Upload: mani-kandan

Post on 14-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 DCMACHINEUNITII

    1/133

    UNIT II

    5/2/2010 V.BALAJI,AP/EEE,DCE 1

  • 7/27/2019 DCMACHINEUNITII

    2/133

    Electric Machine Electric machines can be used as motors and

    generators Electric motor and generators are rotating energy-

    transfer electromechanical motion devices

    V.BALAJI,AP/EEE,DCE 25/2/2010

    Electric motors convert electrical energy tomechanical energy

    Generators convert mechanical energy to electrical

    energy

  • 7/27/2019 DCMACHINEUNITII

    3/133

    Electric Machine Electric machines can be divided into 2 types:

    AC machines DC machines

    Several types DC machines

    V.BALAJI,AP/EEE,DCE 35/2/2010

    eparate y exc te Shunt connected

    Series connected

    Compound connected

    Permanent magnet

  • 7/27/2019 DCMACHINEUNITII

    4/133

    Electric Machine All Electric machines have:

    Stationary members (stator) rotating members (rotor)

    Air gap which is separating stator and rotor

    V.BALAJI,AP/EEE,DCE 45/2/2010

    The rotor and stator are coupled magnetically

  • 7/27/2019 DCMACHINEUNITII

    5/133

    Schematic representation of a DCMachine

    DC Machines

    + If

    NN

    V.BALAJI,AP/EEE,DCE 55/2/2010

    StatorStator

    VVff

    -

    If

    If

    ff

    22

    SS

  • 7/27/2019 DCMACHINEUNITII

    6/133

    Electric Machine The armature winding is placed in the rotor

    slot and connected to rotating commutatorwhich rectifies the induced voltage

    V.BALAJI,AP/EEE,DCE 65/2/2010

    armature winding, ride on commutator

  • 7/27/2019 DCMACHINEUNITII

    7/133

    DC Machines

    Elementary two-pole DC Machine

    V.BALAJI,AP/EEE,DCE 75/2/2010

  • 7/27/2019 DCMACHINEUNITII

    8/133

    Electric Machine The armature winding consists of identical coils carried in

    slots that are uniformly distributed around the periphery of the

    rotor Conventional DC machines are excited by direct current, in

    particular if a voltage-fed converter is used a dc voltage uf issupplied to the stationary field winding

    V.BALAJI,AP/EEE,DCE 85/2/2010

    ence t e exc tat on magnet c e s pro uce y t e ecoils

    Due to the commutator, armature and field windings producestationary magnetomotive forces that are displaced by 90electrical degrees

  • 7/27/2019 DCMACHINEUNITII

    9/133

    The field winding is placed on the statorand supplied from a DC Source.

    DC Machines

    NN ArmatureArmatureWindinWindin

    V.BALAJI,AP/EEE,DCE 95/2/2010

    RotorRotor

    ff

    22SS

    xx

    xx x

    xx

    x

  • 7/27/2019 DCMACHINEUNITII

    10/133

    Magnetic Flux in DC machines

    rotor

    NN

    +

    a

    V.BALAJI,AP/EEE,DCE 105/2/2010

    f/2

    stator

    f

    SS

    Vf

    -

    .. .. ..

    xx x x x x

    Armature

    Winding

    If

  • 7/27/2019 DCMACHINEUNITII

    11/133

    The current is induced in the RotorRotor

    WindingWinding (i.e. the Armature WindingArmature Winding)since it is placed in the field (Flux

    DC Machines

    V.BALAJI,AP/EEE,DCE 115/2/2010

    .

    ff

  • 7/27/2019 DCMACHINEUNITII

    12/133

    mmf produced by the armature and mmfproduced by the field winding areortho onal.

    Orthogonality of Magnetic Fields inDC Machines

    V.BALAJI,AP/EEE,DCE 125/2/2010

    B

    IL Fo

    ILBL 90sin== BIF

    Magnetic field due to

    field winding

    Magnetic field due to

    armature winding

    90o

  • 7/27/2019 DCMACHINEUNITII

    13/133

    The force acting on the rotor, isexpressed as

    DC Machines

    { {

    FieldthetoDue

    ArmaturethetoDue

    BLIf =

    V.BALAJI,AP/EEE,DCE 135/2/2010

    ll

    ff

    ff

    TTeeTTee = xff ll

  • 7/27/2019 DCMACHINEUNITII

    14/133

    The Field winding is placed on the stator

    and the current (voltage) is induced inthe rotor winding which is referred alsoas the armature winding.

    DC Machines

    V.BALAJI,AP/EEE,DCE 145/2/2010

    In DC Machines, the mmfmmfproduced bythe field winding and the mmfmmfproduced

    by the armature winding are at right-

    angle with respect to each other.

    The torque is produced from theinteraction of these two fields.

  • 7/27/2019 DCMACHINEUNITII

    15/133

    V.BALAJI,AP/EEE,DCE 155/2/2010

  • 7/27/2019 DCMACHINEUNITII

    16/133

    V.BALAJI,AP/EEE,DCE 165/2/2010

  • 7/27/2019 DCMACHINEUNITII

    17/133

    8.1 DC Motor

    The direct current (dc) machine can be usedas a motor or as a generator. DC Machine is most often used for a motor.

    V.BALAJI,AP/EEE,DCE 175/2/2010

    the easy speed and torque regulation. However, their application is limited to mills,

    mines and trains. As examples, trolleys andunderground subway cars may use dcmotors.

    In the past, automobiles were equipped withdc dynamos to charge their batteries.

  • 7/27/2019 DCMACHINEUNITII

    18/133

    8.1 DC Motor

    Even today the starter is a series dc motor However, the recent development of power

    electronics has reduced the use of dc motorsand enerators.

    V.BALAJI,AP/EEE,DCE 185/2/2010

    The electronically controlled ac drives aregradually replacing the dc motor drives infactories.

    Nevertheless, a large number of dc motorsare still used by industry and severalthousand are sold annually.

  • 7/27/2019 DCMACHINEUNITII

    19/133

    8.1 Construction

    V.BALAJI,AP/EEE,DCE 195/2/2010

  • 7/27/2019 DCMACHINEUNITII

    20/133

    DC Machine Construction

    V.BALAJI,AP/EEE,DCE 205/2/2010

    Figure 8.1 General arrangement of a dc machine

  • 7/27/2019 DCMACHINEUNITII

    21/133

    DC Machines

    The stator of the dc motor has

    poles, which are excited by dccurrent to produce magneticfields.

    In the neutral zone, in themiddle between the poles,

    V.BALAJI,AP/EEE,DCE 215/2/2010

    commu a ng po es are p ace

    to reduce sparking of thecommutator. The commutatingpoles are supplied by dccurrent.

    Compensating windings aremounted on the main poles.

    These short-circuited windingsdamp rotor oscillations. .

  • 7/27/2019 DCMACHINEUNITII

    22/133

    DC Machines

    The poles are mounted onan iron core that provides aclosed magnetic circuit.

    The motor housing supportsthe iron core, the brushes

    V.BALAJI,AP/EEE,DCE 225/2/2010

    and the bearings. The rotor has a ring-shaped

    laminated iron core withslots.

    Coils with several turns are

    placed in the slots. Thedistance between the twolegs of the coil is about 180electric degrees.

  • 7/27/2019 DCMACHINEUNITII

    23/133

    DC Machines

    The coils are connected in

    series through the commutatorsegments.

    The ends of each coil areconnected to a commutatorsegment.

    V.BALAJI,AP/EEE,DCE 235/2/2010

    The commutator consists ofinsulated copper segmentsmounted on an insulated tube.

    Two brushes are pressed to thecommutator to permit currentflow.

    The brushes are placed in theneutral zone, where themagnetic field is close to zero,to reduce arcing.

  • 7/27/2019 DCMACHINEUNITII

    24/133

    DC Machines

    The rotor has a ring-shapedlaminated iron core withslots.

    The commutator consists ofinsulated co er se ments

    V.BALAJI,AP/EEE,DCE 245/2/2010

    mounted on an insulatedtube.

    Two brushes are pressed tothe commutator to permitcurrent flow.

    The brushes are placed inthe neutral zone, where themagnetic field is close tozero, to reduce arcing.

  • 7/27/2019 DCMACHINEUNITII

    25/133

    DC Machines

    The commutatorswitchesthe current from one rotorcoil to the adjacent coil,

    The switching requires theinterru tion of the coil

    V.BALAJI,AP/EEE,DCE 255/2/2010

    current. The sudden interruption of

    an inductive currentgenerates high voltages .

    The high voltage produces

    flashover and arcingbetween the commutatorsegment and the brush.

  • 7/27/2019 DCMACHINEUNITII

    26/133

    DC Machine Construction

    |

    Shaft

    BrushIr_dc

    Ir_dc

    /2

    Rotation

    Ir_dc

    /2

    12

    8

    Pole

    winding

    V.BALAJI,AP/EEE,DCE 265/2/2010

    Copper

    segment

    Insulation

    Rotor

    Winding

    N S

    Ir_dc

    3

    4

    5

    6

    7

    Figure 8.2 Commutator with the rotor coils connections.

  • 7/27/2019 DCMACHINEUNITII

    27/133

    DC Machine Construction

    V.BALAJI,AP/EEE,DCE 275/2/2010

    Figure 8.3 Details of the commutator of a dc motor.

  • 7/27/2019 DCMACHINEUNITII

    28/133

    DC Machine Construction

    V.BALAJI,AP/EEE,DCE 285/2/2010

    Figure 8.4 DC motor stator with poles visible.

  • 7/27/2019 DCMACHINEUNITII

    29/133

    DC Machine Construction

    V.BALAJI,AP/EEE,DCE 295/2/2010

    Figure 8.5 Rotor of a dc motor.

  • 7/27/2019 DCMACHINEUNITII

    30/133

    DC Machine Construction

    V.BALAJI,AP/EEE,DCE 305/2/2010

    Figure 8.6 Cutaway view of a dc motor.

  • 7/27/2019 DCMACHINEUNITII

    31/133

    V.BALAJI,AP/EEE,DCE 315/2/2010

  • 7/27/2019 DCMACHINEUNITII

    32/133

    V.BALAJI,AP/EEE,DCE 325/2/2010

  • 7/27/2019 DCMACHINEUNITII

    33/133

    V.BALAJI,AP/EEE,DCE 335/2/2010

  • 7/27/2019 DCMACHINEUNITII

    34/133

    V.BALAJI,AP/EEE,DCE 345/2/2010

  • 7/27/2019 DCMACHINEUNITII

    35/133

    V.BALAJI,AP/EEE,DCE 355/2/2010

  • 7/27/2019 DCMACHINEUNITII

    36/133

    V.BALAJI,AP/EEE,DCE 365/2/2010

  • 7/27/2019 DCMACHINEUNITII

    37/133

    V.BALAJI,AP/EEE,DCE 375/2/2010

  • 7/27/2019 DCMACHINEUNITII

    38/133

    V.BALAJI,AP/EEE,DCE 385/2/2010

  • 7/27/2019 DCMACHINEUNITII

    39/133

    V.BALAJI,AP/EEE,DCE 395/2/2010

  • 7/27/2019 DCMACHINEUNITII

    40/133

    V.BALAJI,AP/EEE,DCE 405/2/2010

  • 7/27/2019 DCMACHINEUNITII

    41/133

    V.BALAJI,AP/EEE,DCE 415/2/2010

  • 7/27/2019 DCMACHINEUNITII

    42/133

    V.BALAJI,AP/EEE,DCE 425/2/2010

  • 7/27/2019 DCMACHINEUNITII

    43/133

    V.BALAJI,AP/EEE,DCE 435/2/2010

  • 7/27/2019 DCMACHINEUNITII

    44/133

    V.BALAJI,AP/EEE,DCE 445/2/2010

  • 7/27/2019 DCMACHINEUNITII

    45/133

    V.BALAJI,AP/EEE,DCE 455/2/2010

  • 7/27/2019 DCMACHINEUNITII

    46/133

    V.BALAJI,AP/EEE,DCE 465/2/2010

  • 7/27/2019 DCMACHINEUNITII

    47/133

    V.BALAJI,AP/EEE,DCE 475/2/2010

  • 7/27/2019 DCMACHINEUNITII

    48/133

    V.BALAJI,AP/EEE,DCE 485/2/2010

  • 7/27/2019 DCMACHINEUNITII

    49/133

    V.BALAJI,AP/EEE,DCE 495/2/2010

  • 7/27/2019 DCMACHINEUNITII

    50/133

    V.BALAJI,AP/EEE,DCE 505/2/2010

  • 7/27/2019 DCMACHINEUNITII

    51/133

    V.BALAJI,AP/EEE,DCE 515/2/2010

  • 7/27/2019 DCMACHINEUNITII

    52/133

    V.BALAJI,AP/EEE,DCE 525/2/2010

  • 7/27/2019 DCMACHINEUNITII

    53/133

    V.BALAJI,AP/EEE,DCE 535/2/2010

  • 7/27/2019 DCMACHINEUNITII

    54/133

    V.BALAJI,AP/EEE,DCE 545/2/2010

  • 7/27/2019 DCMACHINEUNITII

    55/133

    V.BALAJI,AP/EEE,DCE 555/2/2010

  • 7/27/2019 DCMACHINEUNITII

    56/133

    V.BALAJI,AP/EEE,DCE 565/2/2010

    Ch i f S ifi L di

  • 7/27/2019 DCMACHINEUNITII

    57/133

    Choice of Specific Loadings

    (i) Choice of specific magnetic loading

    V.BALAJI,AP/EEE,DCE 575/2/2010

    (II) o ce o spec c e ec r c oa n

    Choice of specific magnetic

  • 7/27/2019 DCMACHINEUNITII

    58/133

    loading

    (1) Teeth Flux density

    (2) Frequency

    V.BALAJI,AP/EEE,DCE 585/2/2010

    o age

  • 7/27/2019 DCMACHINEUNITII

    59/133

    Teeth Flux density If flux density in the air gap is high, itmay lead to high flux density in

    armature teeth beyond the maximumermissible limit.

    V.BALAJI,AP/EEE,DCE 595/2/2010

    The maximum flux density in theteeth at minimum section should not

    go beyond 2.2 wb/m2

  • 7/27/2019 DCMACHINEUNITII

    60/133

    . The reasons are obvious as higher flux density

    (i) Causes increased iron losses

    (ii) Requires higher ampere- turns for passing the

    V.BALAJI,AP/EEE,DCE 605/2/2010

    ux t roug teet ea ng to ncrease

    field copper losses and increased cost of copper

  • 7/27/2019 DCMACHINEUNITII

    61/133

    (2) Frequency

    The frequency of flux reversal in thearmature is given bynp

    f =

    V.BALAJI,AP/EEE,DCE 615/2/2010

    The higher frequency will result in increased ironlosses in the armature core and teeth. Therefore,

    there is a limitation in choosing higher Bavfor a machine having higher frequency.

  • 7/27/2019 DCMACHINEUNITII

    62/133

    (3) Voltage

    For high voltage machine, space requiredfor insulation is comparatively more.

    V.BALAJI,AP/EEE,DCE 625/2/2010

    available for iron on the periphery leadingto narrower teeth

    Therefore, lower value of Bav has to betaken. Otherwise teeth flux densityincreases beyond permissible limit.

  • 7/27/2019 DCMACHINEUNITII

    63/133

    Usually, Bav lies between 0.45 to0.75 wb/m2

    V.BALAJI,AP/EEE,DCE 635/2/2010

    The corresponding value ofmaximum flux density in the gapBg varies from 0.64 to 1.1Wb/m2.

  • 7/27/2019 DCMACHINEUNITII

    64/133

    Maximum flux density in the air gap Bg =Bav

    V.BALAJI,AP/EEE,DCE 645/2/2010

    Lower value of flux density for lower ratingmachines and higher values of fluxdensity, for higher rating machines is theusual choice.

  • 7/27/2019 DCMACHINEUNITII

    65/133

    Choice of specific electricloading

    1) Heating or Temperature Rise (2) Speed

    V.BALAJI,AP/EEE,DCE 655/2/2010

    (4) Size of Machine

    (5) Armature Reaction

    6) Commutation

  • 7/27/2019 DCMACHINEUNITII

    66/133

    (1) Heating or Temperature Rise Using a high value of armature conductors (ac)

    creates problem of heat dissipation

    A high value of ac means either copper used ismore i.e., having large number of conductors

    V.BALAJI,AP/EEE,DCE 665/2/2010

    insulation thickness leading to poor heat dissipation or diameter is less

    leading again to poor heat dissipation because of

    reduced surface area. Both of these results in hightemperature rise in armature.

  • 7/27/2019 DCMACHINEUNITII

    67/133

    (2) Speed

    For a high-speed machine, ventilation isobviously better and greater losses couldbe dissi ated

    V.BALAJI,AP/EEE,DCE 675/2/2010

    Thus, a higher value of 'ac' can be usedfor higher speed machine.

  • 7/27/2019 DCMACHINEUNITII

    68/133

    3) Voltage

    Machines with high voltage require largespace for insulation

    V.BALAJI,AP/EEE,DCE 685/2/2010

    ,

    possible to reduce the space required foriron because of the limitation imposed byflux density in the teeth

    Therefore, space for copper is reduced.So, lesser value of 'ac' is used in such

    cases.

  • 7/27/2019 DCMACHINEUNITII

    69/133

    (4) Size of Machine

    In large size machine, there is more spacefor accommodating copper thereforehi her ac should be used.

    V.BALAJI,AP/EEE,DCE 695/2/2010

  • 7/27/2019 DCMACHINEUNITII

    70/133

    (5) Armature Reaction

    With high value of ac, armature ampereturns also increases. Therefore armaturereaction will be severe

    V.BALAJI,AP/EEE,DCE 705/2/2010

    To counter this, field mmf is increased andso the cost of machine goes high.

  • 7/27/2019 DCMACHINEUNITII

    71/133

    (6) Commutation

    High value of ac worsens the commutationcondition in machines. From the point ofview of commutation a small value of ac is

    V.BALAJI,AP/EEE,DCE 715/2/2010

    desirable. The value of ac usually lies between

    15,000 to 50,000 amp. conductors /m.

  • 7/27/2019 DCMACHINEUNITII

    72/133

    V.BALAJI,AP/EEE,DCE 725/2/2010

  • 7/27/2019 DCMACHINEUNITII

    73/133

    V.BALAJI,AP/EEE,DCE 735/2/2010

    Guide lines for selecting for number

  • 7/27/2019 DCMACHINEUNITII

    74/133

    Guide lines for selecting for numberof poles

    V.BALAJI,AP/EEE,DCE 745/2/2010

  • 7/27/2019 DCMACHINEUNITII

    75/133

    V.BALAJI,AP/EEE,DCE 755/2/2010

  • 7/27/2019 DCMACHINEUNITII

    76/133

    V.BALAJI,AP/EEE,DCE76

    5/2/2010

  • 7/27/2019 DCMACHINEUNITII

    77/133

    V.BALAJI,AP/EEE,DCE77

    5/2/2010

  • 7/27/2019 DCMACHINEUNITII

    78/133

    V.BALAJI,AP/EEE,DCE78

    5/2/2010

  • 7/27/2019 DCMACHINEUNITII

    79/133

    V.BALAJI,AP/EEE,DCE79

    5/2/2010

  • 7/27/2019 DCMACHINEUNITII

    80/133

    V.BALAJI,AP/EEE,DCE80

    5/2/2010

  • 7/27/2019 DCMACHINEUNITII

    81/133

    V.BALAJI,AP/EEE,DCE81

    5/2/2010

  • 7/27/2019 DCMACHINEUNITII

    82/133

    V.BALAJI,AP/EEE,DCE82

    5/2/2010

  • 7/27/2019 DCMACHINEUNITII

    83/133

    V.BALAJI,AP/EEE,DCE83

    5/2/2010

  • 7/27/2019 DCMACHINEUNITII

    84/133

    V.BALAJI,AP/EEE,DCE84

    5/2/2010

  • 7/27/2019 DCMACHINEUNITII

    85/133

    V.BALAJI,AP/EEE,DCE85

    5/2/2010

  • 7/27/2019 DCMACHINEUNITII

    86/133

    V.BALAJI,AP/EEE,DCE86

    5/2/2010

  • 7/27/2019 DCMACHINEUNITII

    87/133

    V.BALAJI,AP/EEE,DCE 875/2/2010

  • 7/27/2019 DCMACHINEUNITII

    88/133

    V.BALAJI,AP/EEE,DCE 885/2/2010

  • 7/27/2019 DCMACHINEUNITII

    89/133

    V.BALAJI,AP/EEE,DCE 895/2/2010

  • 7/27/2019 DCMACHINEUNITII

    90/133

    V.BALAJI,AP/EEE,DCE 905/2/2010

  • 7/27/2019 DCMACHINEUNITII

    91/133

    V.BALAJI,AP/EEE,DCE 915/2/2010

  • 7/27/2019 DCMACHINEUNITII

    92/133

    V.BALAJI,AP/EEE,DCE 925/2/2010

  • 7/27/2019 DCMACHINEUNITII

    93/133

    V.BALAJI,AP/EEE,DCE 935/2/2010

  • 7/27/2019 DCMACHINEUNITII

    94/133

    V.BALAJI,AP/EEE,DCE 945/2/2010

  • 7/27/2019 DCMACHINEUNITII

    95/133

    V.BALAJI,AP/EEE,DCE 955/2/2010

  • 7/27/2019 DCMACHINEUNITII

    96/133

    V.BALAJI,AP/EEE,DCE 965/2/2010

  • 7/27/2019 DCMACHINEUNITII

    97/133

    V.BALAJI,AP/EEE,DCE 975/2/2010

  • 7/27/2019 DCMACHINEUNITII

    98/133

    V.BALAJI,AP/EEE,DCE 985/2/2010

  • 7/27/2019 DCMACHINEUNITII

    99/133

    V.BALAJI,AP/EEE,DCE 995/2/2010

  • 7/27/2019 DCMACHINEUNITII

    100/133

    V.BALAJI,AP/EEE,DCE 1005/2/2010

  • 7/27/2019 DCMACHINEUNITII

    101/133

    V.BALAJI,AP/EEE,DCE 1015/2/2010

  • 7/27/2019 DCMACHINEUNITII

    102/133

    V.BALAJI,AP/EEE,DCE 1025/2/2010

  • 7/27/2019 DCMACHINEUNITII

    103/133

    V.BALAJI,AP/EEE,DCE 1035/2/2010

  • 7/27/2019 DCMACHINEUNITII

    104/133

    V.BALAJI,AP/EEE,DCE 1045/2/2010

  • 7/27/2019 DCMACHINEUNITII

    105/133

    V.BALAJI,AP/EEE,DCE 1055/2/2010

  • 7/27/2019 DCMACHINEUNITII

    106/133

    V.BALAJI,AP/EEE,DCE 1065/2/2010

  • 7/27/2019 DCMACHINEUNITII

    107/133

    V.BALAJI,AP/EEE,DCE 1075/2/2010

  • 7/27/2019 DCMACHINEUNITII

    108/133

    V.BALAJI,AP/EEE,DCE 1085/2/2010

    Determine the main dimensions of a 10 H.P ,400 V, 1500r.p.m , dc shunt motor, the average gap density is 0.45

    tesla and ampere conductors/meter are 20,000 . The maxefficiency is 85% Assume shunt field current to be 0 9 A

  • 7/27/2019 DCMACHINEUNITII

    109/133

    efficiency is 85%. Assume shunt field current to be 0.9 Aand the diameter to length ratio is 2.7. The pole arc topole pitch is 0.7

    V.BALAJI,AP/EEE,DCE 1095/2/2010

  • 7/27/2019 DCMACHINEUNITII

    110/133

    V.BALAJI,AP/EEE,DCE 1105/2/2010

  • 7/27/2019 DCMACHINEUNITII

    111/133

    V.BALAJI,AP/EEE,DCE 1115/2/2010

  • 7/27/2019 DCMACHINEUNITII

    112/133

    V.BALAJI,AP/EEE,DCE 1125/2/2010

  • 7/27/2019 DCMACHINEUNITII

    113/133

    V.BALAJI,AP/EEE,DCE 1135/2/2010

  • 7/27/2019 DCMACHINEUNITII

    114/133

    V.BALAJI,AP/EEE,DCE 1145/2/2010

  • 7/27/2019 DCMACHINEUNITII

    115/133

    V.BALAJI,AP/EEE,DCE 1155/2/2010

  • 7/27/2019 DCMACHINEUNITII

    116/133

    V.BALAJI,AP/EEE,DCE 1165/2/2010

  • 7/27/2019 DCMACHINEUNITII

    117/133

    V.BALAJI,AP/EEE,DCE 1175/2/2010

  • 7/27/2019 DCMACHINEUNITII

    118/133

    V.BALAJI,AP/EEE,DCE 1185/2/2010

  • 7/27/2019 DCMACHINEUNITII

    119/133

    V.BALAJI,AP/EEE,DCE 1195/2/2010

    (1)Flux Pulsations

    Flux pulsations mean changes in the air gap

  • 7/27/2019 DCMACHINEUNITII

    120/133

    Flux pulsations mean changes, in the air gap

    flux because of changes in the air gap reluctance

    between the pole faces and the irregularly shaped

    V.BALAJI,AP/EEE,DCE 1205/2/2010

    .

    This flux pulsations give rise to eddy currentlosses in the pole-shoes and produce magnetic

    noise. The flux pulsations are reduced with

    increased number of armature slots.

    (a) To avoid flux pulsations, the air gap

    reluctance per pair of poles should be practically

  • 7/27/2019 DCMACHINEUNITII

    121/133

    constant which is possible if the number of slots per

    pair of poles is an odd integer i.e., the slots per poleis an integer plus .

    V.BALAJI,AP/EEE,DCE 1215/2/2010

    (b) To prevent the flux oscillations, the air gap

    reluctance under pole faces must be kept constant

    for all reactive positions of pole shoes and armature

    core. These conditions are approximated by

    (i) Properly chamfering the tips of pole faces.

  • 7/27/2019 DCMACHINEUNITII

    122/133

    (ii) Making the number of slots per pole shoes an

    integer plus

    V.BALAJI,AP/EEE,DCE 1225/2/2010

    ,

    should be an integer with slots per pole equal to aninteger plus 1/2.

    (2)Cooling

    For large of number slots, lesser number of

    conductors per slot. Therefore cooling is obviouslybetter

  • 7/27/2019 DCMACHINEUNITII

    123/133

    better.

    (3) Tooth Width

    For large number of slots, the slot pitch reduces and

    V.BALAJI,AP/EEE,DCE 1235/2/2010

    .

    reduced tooth width.(i) Flux density at the minimum section of tooth

    increases causing increased iron losses

    (ii) It is difficult to support the teeth at the ventilating

    duct| without obstructing the ventilation

    (4) Commutation|

    From commutation point of view, large number

    of slots smaller number of conductors per slot are

  • 7/27/2019 DCMACHINEUNITII

    124/133

    better.

    (5) Cost

    A smaller number of slots are desirable

    V.BALAJI,AP/EEE,DCE 1245/2/2010

    considering the as the charges for punching the slots

    increase with their num'

    Further with smaller number of slots, there are fewer

    slots to insulate and therefore the cost of insulation

    also goes down.

    Guiding factors for choice of number of armature

    slots

    (1) Slot Pitch

  • 7/27/2019 DCMACHINEUNITII

    125/133

    The value of slot pitch lies between 20 to

    40mm. The usual limit is between 25 to 35mm

    exce t in case of ver small machines where it ma

    V.BALAJI,AP/EEE,DCE 1255/2/2010

    be 20min and even less.

    (2) Slot Loading

    The slot loading i.e. number of ampere

    conductors per slot should not exceed about

    15,000 A.

    (3) Flux Pulsations

    The number of slots per pole pair should be anodd integer in order to minimize pulsation losses.

  • 7/27/2019 DCMACHINEUNITII

    126/133

    (4) Commutation

    The number of slots per pole usually lies

    V.BALAJI,AP/EEE,DCE 1265/2/2010

    .

    (5) Suitability for WindingWhen selecting number of slots, we must

    confirm that the number selected suits the armature

    windings. The number of slots per pole should match

    the value given in Table 2.5

    Table 2.5. Number of Armature slots

  • 7/27/2019 DCMACHINEUNITII

    127/133

    V.BALAJI,AP/EEE,DCE 1275/2/2010

    Number of Armature Coils

    The number of turns per coil and the number

    of coils are so chosen that the voltage between

  • 7/27/2019 DCMACHINEUNITII

    128/133

    of coils are so chosen that the voltage between

    commutator segments is limited to a value where

    there is no possibility of flashover. For very small

    V.BALAJI,AP/EEE,DCE 1285/2/2010

    machines, this limit may rise to 60V owing to their

    high internal resistance. Normally, the maximum

    voltage between adjacent segments at load should

    not exceed 30V.Average voltage between adjacent segments

    at no load

  • 7/27/2019 DCMACHINEUNITII

    129/133

    V.BALAJI,AP/EEE,DCE 1295/2/2010

  • 7/27/2019 DCMACHINEUNITII

    130/133

    V.BALAJI,AP/EEE,DCE 1305/2/2010

    CHOICE OF CURRENT DENSITY

  • 7/27/2019 DCMACHINEUNITII

    131/133

    V.BALAJI,AP/EEE,DCE 1315/2/2010

    Design of shunt field winding

  • 7/27/2019 DCMACHINEUNITII

    132/133

    V.BALAJI,AP/EEE,DCE 1325/2/2010

  • 7/27/2019 DCMACHINEUNITII

    133/133

    V.BALAJI,AP/EEE,DCE 1335/2/2010