ee_exam

10
7/23/2019 EE_exam http://slidepdf.com/reader/full/eeexam 1/10 ELECTRIC AND ELECTRONIC SYSTEM IN VEHICLES - topics - Crovetti 1. Electric systems in vehicles The alternator Conversion of mechanical power into electrical power Practical alternator issues Lundell alternator Open circuit voltage The rectifier • Diode single-phase single-halfwave rectifier single-phase two-halfwave rectifier three-phase single-halfwave rectifier three-phase two-halfwave rectifier The voltage regulator closed-loop alternator performances The electrical energy accumulator batteries for vehicles Starter motor operating principle dc-motor electromechanical model cd-motor mechanical characteristics thermal engine cranking thermal engine starter motor electric system requirement at cranking 2. Electric balance in a vehicle Parking Cranking Running vehicle Battery charge energy balance Running vehicle engine balance and alternator 3. Cable Electrical cable sizing breakdown voltage maximum operating temperature chemical agent resistance voltage drop power loss conductor self-heating heat propagation cable sizing protections overcurrent protections overvoltage protections overtemperature protections

Upload: mirko-pesce

Post on 18-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE_exam

7/23/2019 EE_exam

http://slidepdf.com/reader/full/eeexam 1/10

ELECTRIC AND ELECTRONIC SYSTEM IN VEHICLES

- topics -

Crovetti

1. Electric systems in vehicles• The alternator

• Conversion of mechanical power into electrical power

• Practical alternator issues

• Lundell alternator

• Open circuit voltage

• The rectifier

• Diode

• single-phase single-halfwave rectifier

• single-phase two-halfwave rectifier• three-phase single-halfwave rectifier

• three-phase two-halfwave rectifier

• The voltage regulator

• closed-loop alternator performances

• The electrical energy accumulator

• batteries for vehicles

• Starter motor

• operating principle

• dc-motor electromechanical model

• cd-motor mechanical characteristics

• thermal engine cranking• thermal engine starter motor

• electric system requirement at cranking

2. Electric balance in a vehicle• Parking

• Cranking

• Running vehicle

• Battery charge energy balance

• Running vehicle engine balance and alternator

3. Cable• Electrical cable sizing

• breakdown voltage

• maximum operating temperature

• chemical agent resistance

• voltage drop

• power loss

• conductor self-heating

• heat propagation

• cable sizing

• protections

• overcurrent protections

• overvoltage protections• overtemperature protections

Page 2: EE_exam

7/23/2019 EE_exam

http://slidepdf.com/reader/full/eeexam 2/10

4. Switches• Real switch performances

• Switch types

• mechanical switch

• electromechanical switch

• electronic switch

•mos transistor

• switch configurations

5. Electrical and electronic systems for powertrain• Electric and hybrid powertrain

• electric vehicles

• hybrid vehicles

• series HEV

• parallel HEV

• plugged HEV

• electric energy storage elements

• nominal voltage

• capacity• energy

• maximum power

• power

• maximum recharge time

• cost

• cycle life

• electric machines

• EM vs. ICE

• torque

• minimum RPM

•gearbox

• regeneration

6. Voltage regulators• power efficiency

• output impedance

• RRC

• TDC

• linear voltage regulator circuit

• switching mode voltage regulators

• switching mode power conversion principle

• Buck converter

• CCM operation• DCM operation

• Boost converter

• CCM operation

• DCM operation

• Buck-boost converter

• CCM operation

• DCM operation

• Closed-loop switching mode voltage regulator

7. Actuators and drivers• classification of actuators in vehicles

• linear loads

• non linear loads

• resistive loads

Page 3: EE_exam

7/23/2019 EE_exam

http://slidepdf.com/reader/full/eeexam 3/10

• inductive loads

• capacitive loads

• resistive load drivers

• PWM driving techniques

• solenoid linear actuators

• operation principle

• driving

• electric motor drivers

• DC motor equivalent circuit

• simple motor driver

• half bridge driver

• full bridge driver

8. ECU design flow• model and model validation

• control algorithm development

• ECU design

• hardware flow

• software flow• ECU test and validation

9. ABS and ESP• Antilock braking system

• braking dynamics

• ABS structure and operation

• Electronic stability program

• ESP control operation

• ESP sensors and actuators

• acceleration sensors

• yaw rate sensor

10. Electromagnetic compatibility• Emissions and susceptibility

• Conducted EMC issues

• EMC oriented design

• current loop decoupling

• decoupling capacitors

• Radiated EMC issues

• EMC oriented design

• shielding

• twisted cables

• EMC issues

11. Gasoline engine control• Gasoline engine control targets

• Operating modes• cranking

• warm up

• open loop A/F control

• closed loop A/F control

• hard acceleration

• deceleration

• idle

• Sensors• EPS and RPM sensors

• optical sensors

Page 4: EE_exam

7/23/2019 EE_exam

http://slidepdf.com/reader/full/eeexam 4/10

• magnetic reluctance sensors

• hall effect sensors

• magnetoresistive sensors

• Temperature sensors

• resistive temperature sensors

• thermocouples

•semiconductor-based temperature sensors

• Mass air-flow sensors

• Linear angular position sensors

• potentiometric position sensors

• inductive position sensors

• Exhaust oxygen concentration sensor

• Differential pressure sensor

• Gasoline engine control actuators

• fuel injectors

• ignition system

• A/F ratio control

• open loop A/F ratio control

• closed loop A/F ratio control• proportional control

• integral control

• proportional-integral control

Carena• Signal characterisation

• auto correlation

• Fourier transform

• power

• energy

• finite energy of a signal• finite average power

• Random processes

• WSS

• Amplitude modulation

• convolution theorem

• frequency division multiplexing

• Transmission channel

• block scheme

• Loss

• Transfer function

• pulse response

• finite energy signals• finite average power and random signals

• Filtering effect

• Noise

• central limit theorem

• white and gaussian

• baseband

• bandpass

• Sampling

• Nyquist-Shannon sampling theorem

• levels

• quatizing error• Rb

• BSC

Page 5: EE_exam

7/23/2019 EE_exam

http://slidepdf.com/reader/full/eeexam 5/10

• Digital modulation

Leonardi• Communication networks

• network functions

•transmission, switching, management

• applications

• real time, quasi real time, no real time

• switching

• circuit

• packet

• PDU (PCI+SDU)

• contentions

• QoE, QoS

• layered architecture

• OSI

• Arpa, Internet

• protocols• semantic, sintax, timing

• layering

• SAP

• peer

• virtual circuit

• connection-oriented, datagram

• layers

• physical layer

• data-link layer

• MAC

• error detection and recovery• flow control

• PDU identification

• MAC

• centralized

• distributed

• random

• error correction

• forward

• ARQ

• CRC

• ACK

• timeout interval• buffer

• flow control

• loss less

• on/off

• thresholds in buffers: RTT*rate

• credit

• time to empty buffer > RTT

• time to empty buffer = buffer size / rate

• window protocol

• ACK both for error and flow control

• route W/RTT• network layer

• routing

Page 6: EE_exam

7/23/2019 EE_exam

http://slidepdf.com/reader/full/eeexam 6/10

• congestion control

• billing

• connection oriented

• datagram

• routing:

• static/dynamic

•IP

• local/global

• hierarchical routing

• intra-AS

• inter-AS

• internet routing

• routing tables

• large, not possible sequential search

• ipv4, ipv6

• most/lin significant bits of IP

• intra-AS

• cost based

• link fail• congestion control (internet TCP)

• proactive

• reactive

• congestion collapse

• transport layer

• error control

• flow control

• sequence control

• TCP

• window protocol

• window size adapted to the rate• packets losses

• congestion info

• exponential increase

• additive increase

• packet lost

• 3 acks for packet loss determination

• different from fixed window protocols

• MAC

• shared medium

• dedicated link

• fixed-assignement circuit switching access schemes

• FDMA, TDMA, CDMA• Packet multiple access

• polling: centralized, bandwidth, delay

• token

• no master

• 1-way protocol propagation delay

• reservation and scheduling

• periods in which slaves can “book”, reserve a slot

• seldom employed in packet switching

• rough synchronisation needed

• random access

• aloha• packets sent without rules

• s-aloha

• station synchronised, the success percentage is doubled

Page 7: EE_exam

7/23/2019 EE_exam

http://slidepdf.com/reader/full/eeexam 7/10

• CSMA (carrier sense multiple access)

• done on bus

• 1-persistent vs. 0-persistent

• 1 better low traffic

• 0 better high traffic

• propagation delay not null

•CSMA/CD

• more advances

• collision detection

• full duplex line

• arbitrated (CAN)

• conflicts: physiological

• WiFi

• CSMA/CA collision avoidance

• basic access or RTS/CTS

• arbitration

• bit level

• optic vs. copper

• LAN• IEEE 802.x

• .1 internetworking

• .2 logical link

• .3 medium access

• .4 physical

• .11 wifi

• data link layer: logical link + MAC

• MAC addresses

• unique NIC

• 3 most significant bit: manufacturer

• 3 least significant bit: NIC• unicast, multicast, broadcast

• multicast

• solicitation to advertisement

• packet reception

• normal

• CRC fail

• not my MAC address

• promiscuous

• accent all: dangerous

• IEEE 802.3

• 1-persistent: delays low, collisions detected

• frame format• preamble

• SFD

• MAC destination

• MAC source

• length < 1500

• pudding

• frame check

• inter packet gap > 12b

• collision domain

• hub vs. switch

• On vehicle networks• controls of engine: electronics

• real time

• limited length

Page 8: EE_exam

7/23/2019 EE_exam

http://slidepdf.com/reader/full/eeexam 8/10

• CAN, LIN, Flex-ray, Most

• requirements:

• reliability

• passive elements

• cheap

• versatility

•reliability

• wire failure

• ECU failure

• non-safety applications

• durability

• vehicle life

• hostile environment (military devices)

• general purpose

• real time

• priority-based protocols

• real time protocols

• under utilisation of network

• uC• reduction of devices number

• low power CPU, same architecture

• long-life

• firmware: trade-off between complexity and efficiency

• CAN

• Bosch 1986

• 1 Mb/s

• passive bus

• copper cable

• 3 layers:

• LLC• MAC

• physical

• all elements connected to the same bus

• close network

• functions:

• LLC: acceptance filtering, overload notification, recovery management

• MAC: encapsulation, MAC, ACK

• physical: bit encoding/decoding, bit timing, synchronisation

• encoding: NRZ

• synchro: bit by bit

• timing

• bit period• Pd

• collision management

• arbitration: 0 dominant

• channel sensed at the same time of transmission

• high priority

• data frame structure

• SOF

• 1-dominant bit

• collisions: just if 2 stations start simultaneously

• arbitration

• standard• extended

• alarm to high priority

• RTR, RSR,…: identify the type of frame

Page 9: EE_exam

7/23/2019 EE_exam

http://slidepdf.com/reader/full/eeexam 9/10

• data field

• samples of a signal

• less overload

• CRC field

• central bit, 15b max

• ACK field

•remote frame

• pull mode

• controller requesting data

• error frame

• 6 dominant bits

• overload frame

• 6 dominant bits

• reserving bus for 1-transmitter

• LIN

• very local

• 20 Kb/s

• low cost

• MAC protocol• master/slave

• master: ECU

• slaves: actuators and sensors

• N collisions

• access time

• Flex Ray

• dual channel bus

• dual channel single star

• rate: 10 Mb/s per channel —> 20 Mb/s

• deterministic protocol —> predictable delay

• faul tolerant• high cost

• MAC layer

• deterministic protocol

• synchronisation network

• equal cycles repeated over time

• static segment

• TDMA access

• at least one slot each station

• null packet if station doesn’t need to transmit

• dynamic segment

• mini-slots

• variable• extra-packets

• arbitration avoids collisions

• ruled by frame ID

• ID lower —> higher priority

• symbol window

• special symbols

• optional

• frame structure

• timing

• synchronisation madatory

• rate high• clock errors

Page 10: EE_exam

7/23/2019 EE_exam

http://slidepdf.com/reader/full/eeexam 10/10

- exam questions -Crovetti• performance curve of the alternator, alternator/load scheme

• ECU and HIL test

• overvoltages

• fuel control systems in vehicles, how to control injection timing

• alternator voltage regulator

• lundell machine

• overcurrent

• RPM sensors

• buck converter

• sketch an ECU and describe how it works

• pressure sensor

• main advantages and disadvantages of electrical powertrains

• critical parameters for batteries

• boost converter

• linear solenoid actuator driving

• three-phase two-halfwave rectifier• mass flow sensor

• temperature sensors

• main parameters of power cables

• requirements of power electric plant and starter motor in different phases

• ignition for gasoline engines

• types of switches in a vehicle and parameters to classify, high and low side configurations

• hot wire sensor

Carena• autocorrelation

•signal characterisation: properties of signals, bandwidth of transmission through a cable inrelation to the length

• sharing the medium, TDM

• OSI model: physical layer

• how to transfer analog signals

• stochastic process

• ADC process, quantising and SNR

• modulation: formulas and computations of bandwidth requirements

• ADS process and performances

• microphones

• relation between BER and SNR, channel: model and quality

Leonardi• circuit switching vs. packet switching

• layers structure: communication among layers, main features of layers

• automatic request

• MAC: deterministic vs. random access protocols, what is the worst dealing with delays

• CAN: main properties, management of contents, what happens when we loose a content

• LAN routing: how to set the destination of packets

• on board networks: main features, differences with internet

• flow control issues in a network

• CAN vs. flex ray

• CSMA

• forward error correction and automatic request• impact of propagation delay on CSMA