_font+face=verdana_拉西瓦拱坝稳定性分析和评价_font_

Upload: elias-fung

Post on 21-Feb-2018

245 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 _FONT+face=Verdana_ _FONT_

    1/5

    25 5 Vol.25 No.5

    2006 5 Chinese Journal of Rock Mechanics and Engineering May2006

    20041112 20050125

    (973)(2002CB412708)

    (1978)2000

    [email protected]

    ( 100084)

    1250

    6.08.0

    O 241

    A

    10006915(2006)05090105

    STABILITY ANALYSIS AND EVALUATION OF LAXIWA ARCH DAM

    HUANG YansongZHOU WeiyuanYANG RuoqiongSHEN DaliLIN Peng

    (Department of Hydraulic and Hydropower EngineeringTsinghua UniversityBeijing100084China)

    AbstractThe elastoplastic numerical and experimental results of Laxiwa arch dam-foundation system are

    presented by employing a finite element method simulation(TFINE code) and a geomechanical model experiment

    with scale 1250. The failure mode of the arch dam-foundation during overloading process is given with the

    above two methods. By analyzing and comparing the numerical and experimental datait is indicated that the

    results of numerical simulation agree well with experimental resultsand the stability of Laxiwa arch dam satisfies

    the general requests of arch dam design.

    Key wordsnumerical analysisLaxiwa arch damfinite element methodgeomechanical model experiment

    stability analysis

    1

    250.0 m2 460.0 m 2 452.0 m

    2 296.0 m

    Hf3Hf7

    F28F29L145 Hf8

    Hf10 F222F164F71

    F73F166 F172F164

    F164

    NNWNNENNW

    0.10.5 m 1.01.6 m 2 4602 400 m II

    F29L145

    [1]

    TFINE

    [2]

  • 7/24/2019 _FONT+face=Verdana_ _FONT_

    2/5

    902 2006

    2

    2.1

    2002 7

    1.0 2.0 1.5

    1.0

    400 m 2 860 m

    1 960 m( 900 m)

    1

    1

    Table 1 Material parameters of concrete and rock for Laxiwa

    arch dam and its foundation

    /GPa F c/MPa /(kNm

    3)

    1 20.0 1.00 4.00 0.167 24.0

    2 18.0 0.90 1.70 0.250 26.0

    3 23.0 1.00 2.50 0.250 26.8

    4 F172 2.1 0.40 0.07 0.350 22.0

    5 F28 0.4 0.40 0.07 0.350 22.0

    6 F29 0.7 0.35 0.05 0.350 22.0

    7 L145 7.5 0.50 0.30 0.350 22.0

    8 F164 1.2 0.45 0.07 0.350 22.0

    9 F166 1.2 0.45 0.07 0.350 22.0

    10 F71 1.3 0.50 0.11 0.350 22.0

    11 F222 3.8 0.45 0.09 0.350 22.0

    12 Hf4 0.7 0.35 0.05 0.350 22.0

    13 Hf8 0.6 0.40 0.07 0.350 22.0

    16 4089 284

    1 056

    743

    TFINE

    D-P[3]

    kJIf += 21 0 (1)

    1I ij 2J

    ijS

    = kkijijijS

    3

    1

    k

    c

    2.2

    (1)

    (2)

    (3)

    (4) 2 260 m

    (5)

    (6)

    2.03.04.08.0

    3

    3.1

    1.0

    (1)

    0.1m

    p ==

    C (2)

    (2)

    0.1m

    p==

    C (3)

    (3)

    0.1m

    p ==f

    fCf (4)

    pm

    2

    (1)

  • 7/24/2019 _FONT+face=Verdana_ _FONT_

    3/5

    25 5 . 903

    0.1m

    p ==

    C (5)

    (2)

    m

    p

    l

    lC

    l = (6)

    (3)

    lCCC

    ==

    m

    p (7)

    (4)

    C

    E

    EC

    E ==m

    p

    lCC

    E

    C

    EE

    pp

    m == (8)

    125 0

    =

    C 1.0 =l

    C 250 =

    C 250 =f

    C 1.0 =

    C 1.0

    =cC 250 =C 1.0 =C

    250 =EC 250

    3.2

    (2002 7 )

    (1) 200 m 0.80(2)

    440 m 1.76(3)

    230 m 0.92(4)

    775 m( 400 m 375 m)(5)

    2 500 m

    1

    20 m

    (

    )

    3.3

    121 207

    KYOWAUCAM5B UCAM70A

    1

    Fig.1 Scope of the simulation experiment and its relative geological structure

    Hf7

    m

  • 7/24/2019 _FONT+face=Verdana_ _FONT_

    4/5

    904 2006

    () 7

    35

    10

    4

    4.1

    (Y) 2 2

    (X)

    3 3

    2 (Y)

    Table 2 Y-displacements of downstream dam face mm

    /m

    1 2 1 2 1 2

    2 460 10.80 2.9 80.64 81.2 10.2 5.2

    2 420 6.99 5.9 64.40 77.3 8.9 7.8

    2 340 NA 10.9 45.21 66.2 8.2 13.7

    2 260 NA 15.4 12.80 38.5 NA 16.4

    2 240 4.10 14.3 27.8 4.3 15.6

    2 210 11.4 5.57 12.2 12.9

    (1)1(2)2(3)NA

    (4)

    3 (X)

    Table 3 X-displacements of downstream dam face mm

    /m

    2 460 (1.0) (2.0)

    2 420 (5.0) (4.0)

    2 340 (5.1) (4.8)

    2 260 (3.6) (6.0)

    2 240 (2.8) (1.8)

    2 210

    4.2

    (Y) 2

    2(a)1Y5Y

    2 4602 4202 3402 260 2 210 m

    (a)

    (b)

    2 (Y)

    Fig.2 Relation curves between Y-displacement and water

    ballast(crown cantilever)

    2

    4.05.0

    8.0

    3

    35.0

    7.08.0

    4.3 4

    4.4

    80.64 mm 10.8 mmZ

    6.0P0 6.0P0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    8.0

    9.0

    0 200 400 600 800 1 000/mm

    2 460 2 420 2 3402 260 2 210

    /m

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    0 500 1 000 1 500 2 000 2 500 3 000

    1Y

    2Y

    3Y

    4Y

    5Y

    /mm

  • 7/24/2019 _FONT+face=Verdana_ _FONT_

    5/5

    25 5 . 905

    3

    Fig.3 Failure processes of downstream dam face of the

    simulation experiment

    2.0P0 F172

    35 mm 810 m

    2.0P0

    3.0P0(3.54.0)P0

    (7.08.0)P0

    ( 8.0P0)

    5090 m

    90150 m

    4

    Table 4 Failure process of Laxiwa arch dam-foundation

    system

    1.0P0(

    )

    2.0P0(

    )

    3.0P0(

    )

    2 280 m

    2 320 m

    4.0P0()

    3.0P0

    2 210 m

    5.0P0()

    4.0P0

    2 320 m

    6.0P0()

    2 360 m

    (7.08.0)P0(

    )

    2 320 m

    2 280 m 2 280 m

    150 m

    90 m

    5

    2.0 3.0

    6.08.0

    (References)

    [1] . [M]. 2003.(Wang

    Xucheng. Finite Element Method[M]. BeijingTsinghua University

    Press2003.(in Chinese))

    [2] . (TFINE

    )[R]. 1988.

    (Zhou WeiyuanYang Ruoqiong. 3D nonlinear finite element analysis

    of concrete arch dam(finite element programTFINE)[R]. Beijing

    Department of Hydraulic and Hydropower EngineeringTsinghua

    University1988.(in Chinese))

    [3]

    .

    [M].

    1990.(ZhouWeiyuan. Advanced Rock Mechanics[M]. BeijingWater Resources

    and Electric Power Press1990.(in Chinese))

    (a) 3.0P0

    (b) 5.0P0

    (c)

    7.0P0

    (d) 8.0P0