force - wikipedia, the free encyclopedia

25
 http://en.wi ki pedi a.org/wi ki /Force 1/25 Force Forces are also described as a push or pull on an object. They can be due to phenomena such as gravity, magnetism, or anything that might cause a mass to accelerate. Common symbols  F , F SI unit  newton In SI base units  1 kg · m / s 2 Derivations from other quantities F = m a Force From Wikipedia, the free encyclopedia In physics, a force is any interaction which tends to change the motion of an objec t. [1]  In other words, a force can cause an object with mass to change its velocity (which includes to begin moving from a state of rest), i.e., to accelerate. Force can also be described by intuitive concepts such as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newtons and represented by the symbol F. The or iginal form of Newton's second law states that the net force acting upon an object is equal to the rate at which its momentum changes with time. If the mass of the object is constant, this law implies that the acceleration of an object is directly proportional to the net force acting on the object, is in the direction of the net force, and is inver sely proportional to the mass of the object. As a formula, this is expressed as: where the arrows imply a vector quantity possessing both magnitude and direction. Related concepts to force include: thrust, which increases the velocity of an object; drag, which decreases the velocity of an object; and torque which produces changes in rotational speed of an object. In an extended body, each part usually applies forces on the adjacent parts; the distribution of such forces through the  body is the so-called mechanical stress. Pressure is a simple type of stress. Stress usually causes de formation of solid materials, or flow in fluids. Contents 1 Development of the concept 2 Pre-Newtonian concepts 3 Newtonian mechanics 3.1 First law 3.2 Second law 3.3 Third law 4 Special theory of relativity 5 Descriptions 5.1 Equilibrium 5.1.1 Static 5.1.2 Dynamic

Upload: jay-srivastava

Post on 08-Oct-2015

12 views

Category:

Documents


0 download

DESCRIPTION

force

TRANSCRIPT

  • http://en.wikipedia.org/wiki/Force 1/25

    Force

    Forcesarealsodescribedasapushorpullonanobject.Theycanbeduetophenomenasuchasgravity,magnetism,oranythingthatmight

    causeamasstoaccelerate.

    Commonsymbols F,F

    SIunit newton

    InSIbaseunits 1kgm/s2

    Derivationsfromotherquantities

    F=ma

    ForceFromWikipedia,thefreeencyclopedia

    Inphysics,aforceisanyinteractionwhichtendstochangethemotionofanobject.[1]Inotherwords,aforcecancauseanobjectwithmasstochangeitsvelocity(whichincludestobeginmovingfromastateofrest),i.e.,toaccelerate.Forcecanalsobedescribedbyintuitiveconceptssuchasapushorapull.Aforcehasbothmagnitudeanddirection,makingitavectorquantity.ItismeasuredintheSIunitofnewtonsandrepresentedbythesymbolF.

    TheoriginalformofNewton'ssecondlawstatesthatthenetforceactinguponanobjectisequaltotherateatwhichitsmomentumchangeswithtime.Ifthemassoftheobjectisconstant,thislawimpliesthattheaccelerationofanobjectisdirectlyproportionaltothenetforceactingontheobject,isinthedirectionofthenetforce,andisinverselyproportionaltothemassoftheobject.Asaformula,thisisexpressedas:

    wherethearrowsimplyavectorquantitypossessingbothmagnitudeanddirection.

    Relatedconceptstoforceinclude:thrust,whichincreasesthevelocityofanobjectdrag,whichdecreasesthevelocityofanobjectandtorquewhichproduceschangesinrotationalspeedofanobject.Inanextendedbody,eachpartusuallyappliesforcesontheadjacentpartsthedistributionofsuchforcesthroughthebodyisthesocalledmechanicalstress.Pressureisasimpletypeofstress.Stressusuallycausesdeformationofsolidmaterials,orflowinfluids.

    Contents

    1Developmentoftheconcept2PreNewtonianconcepts3Newtonianmechanics

    3.1Firstlaw3.2Secondlaw3.3Thirdlaw

    4Specialtheoryofrelativity5Descriptions

    5.1Equilibrium5.1.1Static5.1.2Dynamic

  • http://en.wikipedia.org/wiki/Force 2/25

    5.2ForcesinQuantumMechanics5.3Feynmandiagrams

    6Fundamentalforces6.1Gravitational6.2Electromagnetic6.3Nuclear

    7Nonfundamentalforces7.1Normalforce7.2Friction7.3Tension7.4Elasticforce7.5Continuummechanics7.6Fictitiousforces

    8Rotationsandtorque8.1Centripetalforce

    9Kinematicintegrals10Potentialenergy

    10.1Conservativeforces10.2Nonconservativeforces

    11Unitsofmeasurement12Forcemeasurement13Seealso14Notes15References16Furtherreading17Externallinks

    Developmentoftheconcept

    Philosophersinantiquityusedtheconceptofforceinthestudyofstationaryandmovingobjectsandsimplemachines,butthinkerssuchasAristotleandArchimedesretainedfundamentalerrorsinunderstandingforce.Inpartthiswasduetoanincompleteunderstandingofthesometimesnonobviousforceoffriction,andaconsequentlyinadequateviewofthenatureofnaturalmotion.[2]Afundamentalerrorwasthebeliefthataforceisrequiredtomaintainmotion,evenataconstantvelocity.MostofthepreviousmisunderstandingsaboutmotionandforcewereeventuallycorrectedbySirIsaacNewtonwithhismathematicalinsight,heformulatedlawsofmotionthatwerenotimprovedonfornearlythreehundredyears.[3]Bytheearly20thcentury,Einsteindevelopedatheoryofrelativitythatcorrectlypredictedtheactionofforcesonobjectswithincreasingmomentanearthespeedoflight,andalsoprovidedinsightintotheforcesproducedbygravitationandinertia.

    Withmoderninsightsintoquantummechanicsandtechnologythatcanaccelerateparticlesclosetothespeedoflight,particlephysicshasdevisedaStandardModeltodescribeforcesbetweenparticlessmallerthanatoms.TheStandardModelpredictsthatexchangedparticlescalledgaugebosonsarethefundamentalmeansbywhich

  • http://en.wikipedia.org/wiki/Force 3/25

    Aristotlefamouslydescribedaforceasanythingthatcausesanobjecttoundergo"unnaturalmotion"

    forcesareemittedandabsorbed.Onlyfourmaininteractionsareknown:inorderofdecreasingstrength,theyare:strong,electromagnetic,weak,andgravitational.[4]:210[5]:79Highenergyparticlephysicsobservationsmadeduringthe1970sand1980sconfirmedthattheweakandelectromagneticforcesareexpressionsofamorefundamentalelectroweakinteraction.[6]

    PreNewtonianconcepts

    Sinceantiquitytheconceptofforcehasbeenrecognizedasintegraltothefunctioningofeachofthesimplemachines.Themechanicaladvantagegivenbyasimplemachineallowedforlessforcetobeusedinexchangeforthatforceactingoveragreaterdistanceforthesameamountofwork.AnalysisofthecharacteristicsofforcesultimatelyculminatedintheworkofArchimedeswhowasespeciallyfamousforformulatingatreatmentofbuoyantforcesinherentinfluids.[2]

    AristotleprovidedaphilosophicaldiscussionoftheconceptofaforceasanintegralpartofAristoteliancosmology.InAristotle'sview,theterrestrialspherecontainedfourelementsthatcometorestatdifferent"naturalplaces"therein.AristotlebelievedthatmotionlessobjectsonEarth,thosecomposedmostlyoftheelementsearthandwater,tobeintheirnaturalplaceonthegroundandthattheywillstaythatwayifleftalone.Hedistinguishedbetweentheinnatetendencyofobjectstofindtheir"naturalplace"(e.g.,forheavybodiestofall),whichledto"naturalmotion",andunnaturalorforcedmotion,whichrequiredcontinuedapplicationofaforce.[7]Thistheory,basedontheeverydayexperienceofhowobjectsmove,suchastheconstantapplicationofaforceneededtokeepacartmoving,hadconceptualtroubleaccountingforthebehaviorofprojectiles,suchastheflightofarrows.Theplacewherethearchermovestheprojectilewasatthestartoftheflight,andwhiletheprojectilesailedthroughtheair,nodiscernibleefficientcauseactsonit.Aristotlewasawareofthisproblemandproposedthattheairdisplacedthroughtheprojectile'spathcarriestheprojectiletoitstarget.Thisexplanationdemandsacontinuumlikeairforchangeofplaceingeneral.[8]

    AristotelianphysicsbeganfacingcriticisminMedievalscience,firstbyJohnPhiloponusinthe6thcentury.

    TheshortcomingsofAristotelianphysicswouldnotbefullycorrecteduntilthe17thcenturyworkofGalileoGalilei,whowasinfluencedbythelateMedievalideathatobjectsinforcedmotioncarriedaninnateforceofimpetus.GalileoconstructedanexperimentinwhichstonesandcannonballswerebothrolleddownaninclinetodisprovetheAristoteliantheoryofmotionearlyinthe17thcentury.Heshowedthatthebodieswereacceleratedbygravitytoanextentwhichwasindependentoftheirmassandarguedthatobjectsretaintheirvelocityunlessactedonbyaforce,forexamplefriction.[9]

    Newtonianmechanics

    SirIsaacNewtonsoughttodescribethemotionofallobjectsusingtheconceptsofinertiaandforce,andindoingsohefoundthattheyobeycertainconservationlaws.In1687,NewtonwentontopublishhisthesisPhilosophiNaturalisPrincipiaMathematica.[3][10]InthisworkNewtonsetoutthreelawsofmotionthattothisdayarethewayforcesaredescribedinphysics.[10]

    Firstlaw

  • http://en.wikipedia.org/wiki/Force 4/25

    Newton'sFirstLawofMotionstatesthatobjectscontinuetomoveinastateofconstantvelocityunlessacteduponbyanexternalnetforceorresultantforce.[10]ThislawisanextensionofGalileo'sinsightthatconstantvelocitywasassociatedwithalackofnetforce(seeamoredetaileddescriptionofthisbelow).Newtonproposedthateveryobjectwithmasshasaninnateinertiathatfunctionsasthefundamentalequilibrium"naturalstate"inplaceoftheAristotelianideaofthe"naturalstateofrest".Thatis,thefirstlawcontradictstheintuitiveAristotelianbeliefthatanetforceisrequiredtokeepanobjectmovingwithconstantvelocity.Bymakingrestphysicallyindistinguishablefromnonzeroconstantvelocity,Newton'sFirstLawdirectlyconnectsinertiawiththeconceptofrelativevelocities.Specifically,insystemswhereobjectsaremovingwithdifferentvelocities,itisimpossibletodeterminewhichobjectis"inmotion"andwhichobjectis"atrest".Inotherwords,tophrasemattersmoretechnically,thelawsofphysicsarethesameineveryinertialframeofreference,thatis,inallframesrelatedbyaGalileantransformation.

    Forinstance,whiletravelinginamovingvehicleataconstantvelocity,thelawsofphysicsdonotchangefrombeingatrest.Apersoncanthrowaballstraightupintheairandcatchitasitfallsdownwithoutworryingaboutapplyingaforceinthedirectionthevehicleismoving.Thisistrueeventhoughanotherpersonwhoisobservingthemovingvehiclepassbyalsoobservestheballfollowacurvingparabolicpathinthesamedirectionasthemotionofthevehicle.Itistheinertiaoftheballassociatedwithitsconstantvelocityinthedirectionofthevehicle'smotionthatensurestheballcontinuestomoveforwardevenasitisthrownupandfallsbackdown.Fromtheperspectiveofthepersoninthecar,thevehicleandeverythinginsideofitisatrest:Itistheoutsideworldthatismovingwithaconstantspeedintheoppositedirection.Sincethereisnoexperimentthatcandistinguishwhetheritisthevehiclethatisatrestortheoutsideworldthatisatrest,thetwosituationsareconsideredtobephysicallyindistinguishable.Inertiathereforeappliesequallywelltoconstantvelocitymotionasitdoestorest.

    Theconceptofinertiacanbefurthergeneralizedtoexplainthetendencyofobjectstocontinueinmanydifferentformsofconstantmotion,eventhosethatarenotstrictlyconstantvelocity.TherotationalinertiaofplanetEarthiswhatfixestheconstancyofthelengthofadayandthelengthofayear.AlbertEinsteinextendedtheprincipleofinertiafurtherwhenheexplainedthatreferenceframessubjecttoconstantacceleration,suchasthosefreefallingtowardagravitatingobject,werephysicallyequivalenttoinertialreferenceframes.Thisiswhy,forexample,astronautsexperienceweightlessnesswheninfreefallorbitaroundtheEarth,andwhyNewton'sLawsofMotionaremoreeasilydiscernibleinsuchenvironments.Ifanastronautplacesanobjectwithmassinmidairnexttohimself,itwillremainstationarywithrespecttotheastronautduetoitsinertia.Thisisthesamethingthatwouldoccuriftheastronautandtheobjectwereinintergalacticspacewithnonetforceofgravityactingontheirsharedreferenceframe.Thisprincipleofequivalencewasoneofthefoundationalunderpinningsforthedevelopmentofthegeneraltheoryofrelativity.[11]

    Secondlaw

    AmodernstatementofNewton'sSecondLawisavectordifferentialequation:[Note1]

    where isthemomentumofthesystem,andisthenet(vectorsum)force.Inequilibrium,thereiszeronetforcebydefinition,but(balanced)forcesmaybepresentnevertheless.Incontrast,thesecondlawstatesanunbalancedforceactingonanobjectwillresultintheobject'smomentumchangingovertime.[10]

    Bythedefinitionofmomentum,

    wheremisthemassandisthevelocity.[4]:91,92

  • http://en.wikipedia.org/wiki/Force 5/25

    ThoughSirIsaacNewton'smostfamousequationis

    ,heactuallywrotedownadifferentformforhissecondlawofmotionthatdidnotusedifferentialcalculus.

    Newton'ssecondlawappliesonlytoasystemofconstantmass,[Note2]andhencemmaybemovedoutsidethederivativeoperator.Theequationthenbecomes

    Bysubstitutingthedefinitionofacceleration,thealgebraicversionofNewton'sSecondLawisderived:

    Newtonneverexplicitlystatedtheformulainthereducedformabove.[12]

    Newton'sSecondLawassertsthedirectproportionalityofaccelerationtoforceandtheinverseproportionalityofaccelerationtomass.Accelerationscanbedefinedthroughkinematicmeasurements.However,whilekinematicsarewelldescribedthroughreferenceframeanalysisinadvancedphysics,therearestilldeepquestionsthatremainastowhatistheproperdefinitionofmass.Generalrelativityoffersanequivalencebetweenspacetimeandmass,butlackingacoherenttheoryofquantumgravity,itisunclearastohoworwhetherthisconnectionisrelevantonmicroscales.Withsomejustification,Newton'ssecondlawcanbetakenasaquantitativedefinitionofmassbywritingthelawasanequalitytherelativeunitsofforceandmassthenarefixed.

    TheuseofNewton'sSecondLawasadefinitionofforcehasbeendisparagedinsomeofthemorerigoroustextbooks,[4]:121[5]:59[13]becauseitisessentiallyamathematicaltruism.Notablephysicists,philosophersandmathematicianswhohavesoughtamoreexplicitdefinitionoftheconceptofforceincludeErnstMach,CliffordTruesdellandWalterNoll.[14][15]

    Newton'sSecondLawcanbeusedtomeasurethestrengthofforces.Forinstance,knowledgeofthemassesofplanetsalongwiththeaccelerationsoftheirorbitsallowsscientiststocalculatethegravitationalforcesonplanets.

    Thirdlaw

    Newton'sThirdLawisaresultofapplyingsymmetrytosituationswhereforcescanbeattributedtothepresenceofdifferentobjects.Thethirdlawmeansthatallforcesareinteractionsbetweendifferentbodies,[16][Note3]andthusthatthereisnosuchthingasaunidirectionalforceoraforcethatactsononlyonebody.WheneverafirstbodyexertsaforceFonasecondbody,thesecondbodyexertsaforceFonthefirstbody.FandFareequalinmagnitudeandoppositeindirection.Thislawissometimesreferredtoastheactionreactionlaw,withFcalledthe"action"andFthe"reaction".Theactionandthereactionaresimultaneous:

    Ifobject1andobject2areconsideredtobeinthesamesystem,thenthenetforceonthesystemduetotheinteractionsbetweenobjects1and2iszerosince

  • http://en.wikipedia.org/wiki/Force 6/25

    Thismeansthatinaclosedsystemofparticles,therearenointernalforcesthatareunbalanced.Thatis,theactionreactionforcesharedbetweenanytwoobjectsinaclosedsystemwillnotcausethecenterofmassofthesystemtoaccelerate.Theconstituentobjectsonlyacceleratewithrespecttoeachother,thesystemitselfremainsunaccelerated.Alternatively,ifanexternalforceactsonthesystem,thenthecenterofmasswillexperienceanaccelerationproportionaltothemagnitudeoftheexternalforcedividedbythemassofthesystem.[4]:191[5]

    CombiningNewton'sSecondandThirdLaws,itispossibletoshowthatthelinearmomentumofasystemisconserved.Using

    andintegratingwithrespecttotime,theequation:

    isobtained.Forasystemwhichincludesobjects1and2,

    whichistheconservationoflinearmomentum.[17]Usingthesimilararguments,itispossibletogeneralizethistoasystemofanarbitrarynumberofparticles.Thisshowsthatexchangingmomentumbetweenconstituentobjectswillnotaffectthenetmomentumofasystem.Ingeneral,aslongasallforcesareduetotheinteractionofobjectswithmass,itispossibletodefineasystemsuchthatnetmomentumisneverlostnorgained.[4][5]

    Specialtheoryofrelativity

    Inthespecialtheoryofrelativity,massandenergyareequivalent(ascanbeseenbycalculatingtheworkrequiredtoaccelerateanobject).Whenanobject'svelocityincreases,sodoesitsenergyandhenceitsmassequivalent(inertia).Itthusrequiresmoreforcetoaccelerateitthesameamountthanitdidatalowervelocity.Newton'sSecondLaw

    remainsvalidbecauseitisamathematicaldefinition.[18]:855876Butinordertobeconserved,relativisticmomentummustberedefinedas:

    where

    isthevelocityandisthespeedoflight

    istherestmass.

    Therelativisticexpressionrelatingforceandaccelerationforaparticlewithconstantnonzerorestmassmovinginthe directionis:

  • http://en.wikipedia.org/wiki/Force 7/25

    Diagramsofablockonaflatsurfaceandaninclinedplane.Forcesareresolvedandaddedtogethertodeterminetheirmagnitudesandthenetforce.

    wheretheLorentzfactor

    [19]

    Intheearlyhistoryofrelativity,theexpressions andwerecalledlongitudinalandtransversemass.Relativisticforcedoesnotproduceaconstantacceleration,butaneverdecreasingaccelerationastheobjectapproachesthespeedoflight.Notethatisundefinedforanobjectwithanonzerorestmassatthespeedoflight,andthetheoryyieldsnopredictionatthatspeed.

    Ifisverysmallcomparedto ,thenisverycloseto1and

    isacloseapproximation.Evenforuseinrelativity,however,onecanrestoretheformof

    throughtheuseoffourvectors.Thisrelationiscorrectinrelativitywhen isthefourforce,istheinvariantmass,andisthefouracceleration.[20]

    Descriptions

    Sinceforcesareperceivedaspushesorpulls,thiscanprovideanintuitiveunderstandingfordescribingforces.[3]Aswithotherphysicalconcepts(e.g.temperature),theintuitiveunderstandingofforcesisquantifiedusingpreciseoperationaldefinitionsthatareconsistentwithdirectobservationsandcomparedtoastandardmeasurementscale.Throughexperimentation,itisdeterminedthatlaboratorymeasurementsofforcesarefullyconsistentwiththeconceptualdefinitionofforceofferedbyNewtonianmechanics.

    Forcesactinaparticulardirectionandhavesizesdependentuponhowstrongthepushorpullis.Becauseofthesecharacteristics,forcesareclassifiedas"vectorquantities".Thismeansthatforcesfollowadifferentsetofmathematicalrulesthanphysicalquantitiesthatdonothavedirection(denotedscalarquantities).Forexample,whendeterminingwhathappenswhentwoforcesactonthesameobject,itisnecessarytoknowboththemagnitudeandthedirectionofbothforcestocalculatetheresult.Ifbothofthesepiecesofinformationarenotknownforeachforce,thesituationisambiguous.Forexample,ifyouknowthattwopeoplearepullingonthesameropewithknownmagnitudesofforcebutyoudonotknowwhichdirectioneitherpersonispulling,itisimpossibletodeterminewhattheaccelerationoftheropewillbe.Thetwopeoplecouldbepullingagainsteachotherasintugofwarorthetwopeoplecouldbepullinginthesamedirection.Inthissimpleonedimensionalexample,withoutknowingthedirectionoftheforcesitisimpossibletodecidewhetherthenetforceistheresultofaddingthetwoforcemagnitudesorsubtractingonefromtheother.Associatingforceswithvectorsavoidssuchproblems.

  • http://en.wikipedia.org/wiki/Force 8/25

    Historically,forceswerefirstquantitativelyinvestigatedinconditionsofstaticequilibriumwhereseveralforcescanceledeachotherout.Suchexperimentsdemonstratethecrucialpropertiesthatforcesareadditivevectorquantities:theyhavemagnitudeanddirection.[3]Whentwoforcesactonapointparticle,theresultingforce,theresultant(alsocalledthenetforce),canbedeterminedbyfollowingtheparallelogramruleofvectoraddition:theadditionoftwovectorsrepresentedbysidesofaparallelogram,givesanequivalentresultantvectorwhichisequalinmagnitudeanddirectiontothetransversaloftheparallelogram.[4][5]Themagnitudeoftheresultantvariesfromthedifferenceofthemagnitudesofthetwoforcestotheirsum,dependingontheanglebetweentheirlinesofaction.However,iftheforcesareactingonanextendedbody,theirrespectivelinesofapplicationmustalsobespecifiedinordertoaccountfortheireffectsonthemotionofthebody.

    Freebodydiagramscanbeusedasaconvenientwaytokeeptrackofforcesactingonasystem.Ideally,thesediagramsaredrawnwiththeanglesandrelativemagnitudesoftheforcevectorspreservedsothatgraphicalvectoradditioncanbedonetodeterminethenetforce.[21]

    Aswellasbeingadded,forcescanalsoberesolvedintoindependentcomponentsatrightanglestoeachother.Ahorizontalforcepointingnortheastcanthereforebesplitintotwoforces,onepointingnorth,andonepointingeast.Summingthesecomponentforcesusingvectoradditionyieldstheoriginalforce.Resolvingforcevectorsintocomponentsofasetofbasisvectorsisoftenamoremathematicallycleanwaytodescribeforcesthanusingmagnitudesanddirections.[22]Thisisbecause,fororthogonalcomponents,thecomponentsofthevectorsumareuniquelydeterminedbythescalaradditionofthecomponentsoftheindividualvectors.Orthogonalcomponentsareindependentofeachotherbecauseforcesactingatninetydegreestoeachotherhavenoeffectonthemagnitudeordirectionoftheother.Choosingasetoforthogonalbasisvectorsisoftendonebyconsideringwhatsetofbasisvectorswillmakethemathematicsmostconvenient.Choosingabasisvectorthatisinthesamedirectionasoneoftheforcesisdesirable,sincethatforcewouldthenhaveonlyonenonzerocomponent.Orthogonalforcevectorscanbethreedimensionalwiththethirdcomponentbeingatrightanglestotheothertwo.[4][5]

    Equilibrium

    Equilibriumoccurswhentheresultantforceactingonapointparticleiszero(thatis,thevectorsumofallforcesiszero).Whendealingwithanextendedbody,itisalsonecessarythatthenettorqueinitis0.

    Therearetwokindsofequilibrium:staticequilibriumanddynamicequilibrium.

    Static

    Staticequilibriumwasunderstoodwellbeforetheinventionofclassicalmechanics.Objectswhichareatresthavezeronetforceactingonthem.[23]

    Thesimplestcaseofstaticequilibriumoccurswhentwoforcesareequalinmagnitudebutoppositeindirection.Forexample,anobjectonalevelsurfaceispulled(attracted)downwardtowardthecenteroftheEarthbytheforceofgravity.Atthesametime,surfaceforcesresistthedownwardforcewithequalupwardforce(calledthenormalforce).Thesituationisoneofzeronetforceandnoacceleration.[3]

    Pushingagainstanobjectonafrictionalsurfacecanresultinasituationwheretheobjectdoesnotmovebecausetheappliedforceisopposedbystaticfriction,generatedbetweentheobjectandthetablesurface.Forasituationwithnomovement,thestaticfrictionforceexactlybalancestheappliedforceresultinginnoacceleration.Thestaticfrictionincreasesordecreasesinresponsetotheappliedforceuptoanupperlimitdeterminedbythecharacteristicsofthecontactbetweenthesurfaceandtheobject.[3]

  • http://en.wikipedia.org/wiki/Force 9/25

    GalileoGalileiwasthefirsttopointouttheinherentcontradictionscontainedinAristotle'sdescriptionofforces.

    Astaticequilibriumbetweentwoforcesisthemostusualwayofmeasuringforces,usingsimpledevicessuchasweighingscalesandspringbalances.Forexample,anobjectsuspendedonaverticalspringscaleexperiencestheforceofgravityactingontheobjectbalancedbyaforceappliedbythe"springreactionforce"whichequalstheobject'sweight.Usingsuchtools,somequantitativeforcelawswerediscovered:thattheforceofgravityisproportionaltovolumeforobjectsofconstantdensity(widelyexploitedformillenniatodefinestandardweights)Archimedes'principleforbuoyancyArchimedes'analysisoftheleverBoyle'slawforgaspressureandHooke'slawforsprings.ThesewereallformulatedandexperimentallyverifiedbeforeIsaacNewtonexpoundedhisThreeLawsofMotion.[3][4][5]

    Dynamic

    DynamicequilibriumwasfirstdescribedbyGalileowhonoticedthatcertainassumptionsofAristotelianphysicswerecontradictedbyobservationsandlogic.Galileorealizedthatsimplevelocityadditiondemandsthattheconceptofan"absoluterestframe"didnotexist.Galileoconcludedthatmotioninaconstantvelocitywascompletelyequivalenttorest.ThiswascontrarytoAristotle'snotionofa"naturalstate"ofrestthatobjectswithmassnaturallyapproached.SimpleexperimentsshowedthatGalileo'sunderstandingoftheequivalenceofconstantvelocityandrestwerecorrect.Forexample,ifamarinerdroppedacannonballfromthecrow'snestofashipmovingataconstantvelocity,Aristotelianphysicswouldhavethecannonballfallstraightdownwhiletheshipmovedbeneathit.Thus,inanAristotelianuniverse,thefallingcannonballwouldlandbehindthefootofthemastofamovingship.However,whenthisexperimentisactuallyconducted,thecannonballalwaysfallsatthefootofthemast,asifthecannonballknowstotravelwiththeshipdespitebeingseparatedfromit.Sincethereisnoforwardhorizontalforcebeingappliedonthecannonballasitfalls,theonlyconclusionleftisthatthecannonballcontinuestomovewiththesamevelocityastheboatasitfalls.Thus,noforceisrequiredtokeepthecannonballmovingattheconstantforwardvelocity.[9]

    Moreover,anyobjecttravelingataconstantvelocitymustbesubjecttozeronetforce(resultantforce).Thisisthedefinitionofdynamicequilibrium:whenalltheforcesonanobjectbalancebutitstillmovesataconstantvelocity.

    Asimplecaseofdynamicequilibriumoccursinconstantvelocitymotionacrossasurfacewithkineticfriction.Insuchasituation,aforceisappliedinthedirectionofmotionwhilethekineticfrictionforceexactlyopposestheappliedforce.Thisresultsinzeronetforce,butsincetheobjectstartedwithanonzerovelocity,itcontinuestomovewithanonzerovelocity.Aristotlemisinterpretedthismotionasbeingcausedbytheappliedforce.However,whenkineticfrictionistakenintoconsiderationitisclearthatthereisnonetforcecausingconstantvelocitymotion.[4][5]

    ForcesinQuantumMechanics

    Thenotion"force"keepsitsmeaninginquantummechanics,thoughoneisnowdealingwithoperatorsinsteadofclassicalvariablesandthoughthephysicsisnowdescribedbytheSchrdingerequationinsteadofNewtonianequations.Thishastheconsequencethattheresultsofameasurementarenowsometimes"quantized",i.e.theyappearindiscreteportions.Thisis,ofcourse,difficulttoimagineinthecontextof"forces".However,thepotentialsV(x,y,z)orfields,fromwhichtheforcesgenerallycanbederived,aretreatedsimilartoclassicalpositionvariables,i.e.,.

  • http://en.wikipedia.org/wiki/Force 10/25

    Feynmandiagramforthedecayofaneutronintoaproton.TheWbosonisbetweentwoverticesindicatingarepulsion.

    Thisbecomesdifferentonlyintheframeworkofquantumfieldtheory,wherethesefieldsarealsoquantized.

    However,alreadyinquantummechanicsthereisone"caveat",namelytheparticlesactingontoeachotherdonotonlypossessthespatialvariable,butalsoadiscreteintrinsicangularmomentumlikevariablecalledthe"spin",andthereisthePauliprinciplerelatingthespaceandthespinvariables.Dependingonthevalueofthespin,identicalparticlessplitintotwodifferentclasses,fermionsandbosons.Iftwoidenticalfermions(e.g.electrons)haveasymmetricspinfunction(e.g.parallelspins)thespatialvariablesmustbeantisymmetric(i.e.theforcemustberepulsive),andviceversa,i.e.forantiparallelspinsthepositionvariablesmustbesymmetric(i.e.theforcemustbeattractive).Thusinthecaseoftwofermionsthereisastrictlynegativecorrelationbetweenspatialandspinvariables,whereasfortwobosons(e.g.quantaofelectromagneticwaves,photons)thecorrelationisstrictlypositive.

    Thusthenotion"force"losesalreadypartofitsmeaning.

    Feynmandiagrams

    Inmodernparticlephysics,forcesandtheaccelerationofparticlesareexplainedasamathematicalbyproductofexchangeofmomentumcarryinggaugebosons.Withthedevelopmentofquantumfieldtheoryandgeneralrelativity,itwasrealizedthatforceisaredundantconceptarisingfromconservationofmomentum(4momentuminrelativityandmomentumofvirtualparticlesinquantumelectrodynamics).Theconservationofmomentumcanbedirectlyderivedfromthehomogeneityorsymmetryofspaceandsoisusuallyconsideredmorefundamentalthantheconceptofaforce.Thusthecurrentlyknownfundamentalforcesareconsideredmoreaccuratelytobe"fundamentalinteractions".[6]:199128WhenparticleAemits(creates)orabsorbs(annihilates)virtualparticleB,amomentumconservationresultsinrecoilofparticleAmakingimpressionofrepulsionorattractionbetweenparticlesAA'exchangingbyB.Thisdescriptionappliestoallforcesarisingfromfundamentalinteractions.Whilesophisticatedmathematicaldescriptionsareneededtopredict,infulldetail,theaccurateresultofsuchinteractions,thereisaconceptuallysimplewaytodescribesuchinteractionsthroughtheuseofFeynmandiagrams.InaFeynmandiagram,eachmatterparticleisrepresentedasastraightline(seeworldline)travelingthroughtimewhichnormallyincreasesuportotherightinthediagram.MatterandantimatterparticlesareidenticalexceptfortheirdirectionofpropagationthroughtheFeynmandiagram.Worldlinesofparticlesintersectatinteractionvertices,andtheFeynmandiagramrepresentsanyforcearisingfromaninteractionasoccurringatthevertexwithanassociatedinstantaneouschangeinthedirectionoftheparticleworldlines.Gaugebosonsareemittedawayfromthevertexaswavylinesand,inthecaseofvirtualparticleexchange,areabsorbedatanadjacentvertex.[24]

    TheutilityofFeynmandiagramsisthatothertypesofphysicalphenomenathatarepartofthegeneralpictureoffundamentalinteractionsbutareconceptuallyseparatefromforcescanalsobedescribedusingthesamerules.Forexample,aFeynmandiagramcandescribeinsuccinctdetailhowaneutrondecaysintoanelectron,proton,andneutrino,aninteractionmediatedbythesamegaugebosonthatisresponsiblefortheweaknuclearforce.[24]

    Fundamentalforces

    Alloftheforcesintheuniversearebasedonfourfundamentalinteractions.Thestrongandweakforcesarenuclearforcesthatactonlyatveryshortdistances,andareresponsiblefortheinteractionsbetweensubatomicparticles,includingnucleonsandcompoundnuclei.Theelectromagneticforceactsbetweenelectriccharges,and

  • http://en.wikipedia.org/wiki/Force 11/25

    thegravitationalforceactsbetweenmasses.Allotherforcesinnaturederivefromthesefourfundamentalinteractions.Forexample,frictionisamanifestationoftheelectromagneticforceactingbetweentheatomsoftwosurfaces,andthePauliexclusionprinciple,[25]whichdoesnotpermitatomstopassthrougheachother.Similarly,theforcesinsprings,modeledbyHooke'slaw,aretheresultofelectromagneticforcesandtheExclusionPrincipleactingtogethertoreturnanobjecttoitsequilibriumposition.Centrifugalforcesareaccelerationforceswhicharisesimplyfromtheaccelerationofrotatingframesofreference.[4]:1211[5]:359

    Thedevelopmentoffundamentaltheoriesforforcesproceededalongthelinesofunificationofdisparateideas.Forexample,IsaacNewtonunifiedtheforceresponsibleforobjectsfallingatthesurfaceoftheEarthwiththeforceresponsiblefortheorbitsofcelestialmechanicsinhisuniversaltheoryofgravitation.MichaelFaradayandJamesClerkMaxwelldemonstratedthatelectricandmagneticforceswereunifiedthroughoneconsistenttheoryofelectromagnetism.Inthe20thcentury,thedevelopmentofquantummechanicsledtoamodernunderstandingthatthefirstthreefundamentalforces(allexceptgravity)aremanifestationsofmatter(fermions)interactingbyexchangingvirtualparticlescalledgaugebosons.[26]Thisstandardmodelofparticlephysicspositsasimilaritybetweentheforcesandledscientiststopredicttheunificationoftheweakandelectromagneticforcesinelectroweaktheorysubsequentlyconfirmedbyobservation.ThecompleteformulationofthestandardmodelpredictsanasyetunobservedHiggsmechanism,butobservationssuchasneutrinooscillationsindicatethatthestandardmodelisincomplete.AGrandUnifiedTheoryallowingforthecombinationoftheelectroweakinteractionwiththestrongforceisheldoutasapossibilitywithcandidatetheoriessuchassupersymmetryproposedtoaccommodatesomeoftheoutstandingunsolvedproblemsinphysics.Physicistsarestillattemptingtodevelopselfconsistentunificationmodelsthatwouldcombineallfourfundamentalinteractionsintoatheoryofeverything.Einsteintriedandfailedatthisendeavor,butcurrentlythemostpopularapproachtoansweringthisquestionisstringtheory.[6]:212219

    Thefourfundamentalforcesofnature[27]

    Property/Interaction GravitationWeak Electromagnetic Strong

    (Electroweak) Fundamental Residual

    Actson: MassEnergy Flavor Electriccharge ColorchargeAtomicnuclei

    Particlesexperiencing: All Quarks,leptonsElectricallycharged

    Quarks,Gluons Hadrons

    Particlesmediating:Graviton(notyetobserved)

    W+WZ0 Gluons Mesons

    Strengthinthescaleofquarks: 10

    41 104 1 60 NotapplicabletoquarksStrengthinthescaleofprotons/neutrons: 10

    36 107 1 Notapplicabletohadrons 20

    Gravitational

    WhatwenowcallgravitywasnotidentifiedasauniversalforceuntiltheworkofIsaacNewton.BeforeNewton,thetendencyforobjectstofalltowardstheEarthwasnotunderstoodtoberelatedtothemotionsofcelestialobjects.Galileowasinstrumentalindescribingthecharacteristicsoffallingobjectsbydeterminingthattheaccelerationofeveryobjectinfreefallwasconstantandindependentofthemassoftheobject.Today,thisaccelerationduetogravitytowardsthesurfaceoftheEarthisusuallydesignatedasandhasamagnitudeofabout9.81meterspersecondsquared(thismeasurementistakenfromsealevelandmayvarydependingon

  • http://en.wikipedia.org/wiki/Force 12/25

    Imagesofafreelyfallingbasketballtakenwithastroboscopeat20flashespersecond.Thedistanceunitsontherightaremultiplesofabout12millimetres.Thebasketballstartsatrest.Atthetimeofthefirstflash(distancezero)itisreleased,afterwhichthenumberofunitsfallenisequaltothesquareofthenumberofflashes.

    location),andpointstowardthecenteroftheEarth.[28]ThisobservationmeansthattheforceofgravityonanobjectattheEarth'ssurfaceisdirectlyproportionaltotheobject'smass.Thusanobjectthathasamassofwillexperienceaforce:

    Infreefall,thisforceisunopposedandthereforethenetforceontheobjectisitsweight.Forobjectsnotinfreefall,theforceofgravityisopposedbythereactionsoftheirsupports.Forexample,apersonstandingonthegroundexperienceszeronetforce,sincehisweightisbalancedbyanormalforceexertedbytheground.[4][5]

    Newton'scontributiontogravitationaltheorywastounifythemotionsofheavenlybodies,whichAristotlehadassumedwereinanaturalstateofconstantmotion,withfallingmotionobservedontheEarth.HeproposedalawofgravitythatcouldaccountforthecelestialmotionsthathadbeendescribedearlierusingKepler'slawsofplanetarymotion.[29]

    Newtoncametorealizethattheeffectsofgravitymightbeobservedindifferentwaysatlargerdistances.Inparticular,NewtondeterminedthattheaccelerationoftheMoonaroundtheEarthcouldbeascribedtothesameforceofgravityiftheaccelerationduetogravitydecreasedasaninversesquarelaw.Further,Newtonrealizedthattheaccelerationduetogravityisproportionaltothemassoftheattractingbody.[29]Combiningtheseideasgivesaformulathatrelatesthemass()andtheradius()oftheEarthtothegravitationalacceleration:

    wherethevectordirectionisgivenby,theunitvectordirectedoutwardfromthecenteroftheEarth.[10]

    Inthisequation,adimensionalconstantisusedtodescribetherelativestrengthofgravity.ThisconstanthascometobeknownasNewton'sUniversalGravitationConstant,[30]thoughitsvaluewasunknowninNewton'slifetime.Notuntil1798wasHenryCavendishabletomakethefirstmeasurementofusingatorsionbalancethiswaswidelyreportedinthepressasameasurementofthemassoftheEarthsinceknowingcouldallowonetosolvefortheEarth'smassgiventheaboveequation.Newton,however,realizedthatsinceallcelestialbodiesfollowedthesamelawsofmotion,hislawofgravityhadtobeuniversal.Succinctlystated,Newton'sLawofGravitationstatesthattheforceonasphericalobjectofmassduetothegravitationalpullofmassis

    where isthedistancebetweenthetwoobjects'centersofmassandistheunitvectorpointedinthedirectionawayfromthecenterofthefirstobjecttowardthecenterofthesecondobject.[10]

    Thisformulawaspowerfulenoughtostandasthebasisforallsubsequentdescriptionsofmotionwithinthesolarsystemuntilthe20thcentury.Duringthattime,sophisticatedmethodsofperturbationanalysis[31]wereinventedtocalculate

  • http://en.wikipedia.org/wiki/Force 13/25

    thedeviationsoforbitsduetotheinfluenceofmultiplebodiesonaplanet,moon,comet,orasteroid.TheformalismwasexactenoughtoallowmathematicianstopredicttheexistenceoftheplanetNeptunebeforeitwasobserved.[32]

    ItwasonlytheorbitoftheplanetMercurythatNewton'sLawofGravitationseemednottofullyexplain.Someastrophysicistspredictedtheexistenceofanotherplanet(Vulcan)thatwouldexplainthediscrepancieshowever,despitesomeearlyindications,nosuchplanetcouldbefound.WhenAlbertEinsteinformulatedhistheoryofgeneralrelativity(GR)heturnedhisattentiontotheproblemofMercury'sorbitandfoundthathistheoryaddedacorrectionwhichcouldaccountforthediscrepancy.ThiswasthefirsttimethatNewton'sTheoryofGravityhadbeenshowntobelesscorrectthananalternative.[33]

    Sincethen,andsofar,generalrelativityhasbeenacknowledgedasthetheorywhichbestexplainsgravity.InGR,gravitationisnotviewedasaforce,butrather,objectsmovingfreelyingravitationalfieldstravelundertheirowninertiainstraightlinesthroughcurvedspacetimedefinedastheshortestspacetimepathbetweentwospacetimeevents.Fromtheperspectiveoftheobject,allmotionoccursasiftherewerenogravitationwhatsoever.Itisonlywhenobservingthemotioninaglobalsensethatthecurvatureofspacetimecanbeobservedandtheforceisinferredfromtheobject'scurvedpath.Thus,thestraightlinepathinspacetimeisseenasacurvedlineinspace,anditiscalledtheballistictrajectoryoftheobject.Forexample,abasketballthrownfromthegroundmovesinaparabola,asitisinauniformgravitationalfield.Itsspacetimetrajectory(whentheextractdimensionisadded)isalmostastraightline,slightlycurved(withtheradiusofcurvatureoftheorderoffewlightyears).Thetimederivativeofthechangingmomentumoftheobjectiswhatwelabelas"gravitationalforce".[5]

    Electromagnetic

    Theelectrostaticforcewasfirstdescribedin1784byCoulombasaforcewhichexistedintrinsicallybetweentwocharges.[18]:519Thepropertiesoftheelectrostaticforcewerethatitvariedasaninversesquarelawdirectedintheradialdirection,wasbothattractiveandrepulsive(therewasintrinsicpolarity),wasindependentofthemassofthechargedobjects,andfollowedthesuperpositionprinciple.Coulomb'slawunifiesalltheseobservationsintoonesuccinctstatement.[34]

    Subsequentmathematiciansandphysicistsfoundtheconstructoftheelectricfieldtobeusefulfordeterminingtheelectrostaticforceonanelectricchargeatanypointinspace.Theelectricfieldwasbasedonusingahypothetical"testcharge"anywhereinspaceandthenusingCoulomb'sLawtodeterminetheelectrostaticforce.[35]:46to48Thustheelectricfieldanywhereinspaceisdefinedas

    whereisthemagnitudeofthehypotheticaltestcharge.

    Meanwhile,theLorentzforceofmagnetismwasdiscoveredtoexistbetweentwoelectriccurrents.IthasthesamemathematicalcharacterasCoulomb'sLawwiththeprovisothatlikecurrentsattractandunlikecurrentsrepel.Similartotheelectricfield,themagneticfieldcanbeusedtodeterminethemagneticforceonanelectriccurrentatanypointinspace.Inthiscase,themagnitudeofthemagneticfieldwasdeterminedtobe

    whereisthemagnitudeofthehypotheticaltestcurrentand isthelengthofhypotheticalwirethroughwhichthetestcurrentflows.Themagneticfieldexertsaforceonallmagnetsincluding,forexample,thoseusedincompasses.ThefactthattheEarth'smagneticfieldisalignedcloselywiththeorientationoftheEarth'saxis

  • http://en.wikipedia.org/wiki/Force 14/25

    causescompassmagnetstobecomeorientedbecauseofthemagneticforcepullingontheneedle.

    Throughcombiningthedefinitionofelectriccurrentasthetimerateofchangeofelectriccharge,aruleofvectormultiplicationcalledLorentz'sLawdescribestheforceonachargemovinginamagneticfield.[35]Theconnectionbetweenelectricityandmagnetismallowsforthedescriptionofaunifiedelectromagneticforcethatactsonacharge.Thisforcecanbewrittenasasumoftheelectrostaticforce(duetotheelectricfield)andthemagneticforce(duetothemagneticfield).Fullystated,thisisthelaw:

    whereistheelectromagneticforce,isthemagnitudeofthechargeoftheparticle, istheelectricfield,isthevelocityoftheparticlewhichiscrossedwiththemagneticfield().

    Theoriginofelectricandmagneticfieldswouldnotbefullyexplaineduntil1864whenJamesClerkMaxwellunifiedanumberofearliertheoriesintoasetof20scalarequations,whichwerelaterreformulatedinto4vectorequationsbyOliverHeavisideandJosiahWillardGibbs.[36]These"MaxwellEquations"fullydescribedthesourcesofthefieldsasbeingstationaryandmovingcharges,andtheinteractionsofthefieldsthemselves.ThisledMaxwelltodiscoverthatelectricandmagneticfieldscouldbe"selfgenerating"throughawavethattraveledataspeedwhichhecalculatedtobethespeedoflight.Thisinsightunitedthenascentfieldsofelectromagnetictheorywithopticsandleddirectlytoacompletedescriptionoftheelectromagneticspectrum.[37]

    However,attemptingtoreconcileelectromagnetictheorywithtwoobservations,thephotoelectriceffect,andthenonexistenceoftheultravioletcatastrophe,provedtroublesome.Throughtheworkofleadingtheoreticalphysicists,anewtheoryofelectromagnetismwasdevelopedusingquantummechanics.Thisfinalmodificationtoelectromagnetictheoryultimatelyledtoquantumelectrodynamics(orQED),whichfullydescribesallelectromagneticphenomenaasbeingmediatedbywaveparticlesknownasphotons.InQED,photonsarethefundamentalexchangeparticlewhichdescribedallinteractionsrelatingtoelectromagnetismincludingtheelectromagneticforce.[Note4]

    Itisacommonmisconceptiontoascribethestiffnessandrigidityofsolidmattertotherepulsionoflikechargesundertheinfluenceoftheelectromagneticforce.However,thesecharacteristicsactuallyresultfromthePauliexclusionprinciple.Sinceelectronsarefermions,theycannotoccupythesamequantummechanicalstateasotherelectrons.Whentheelectronsinamaterialaredenselypackedtogether,therearenotenoughlowerenergyquantummechanicalstatesforthemall,sosomeofthemmustbeinhigherenergystates.Thismeansthatittakesenergytopackthemtogether.Whilethiseffectismanifestedmacroscopicallyasastructuralforce,itistechnicallyonlytheresultoftheexistenceofafinitesetofelectronstates.

    Nuclear

    Therearetwo"nuclearforces"whichtodayareusuallydescribedasinteractionsthattakeplaceinquantumtheoriesofparticlephysics.Thestrongnuclearforce[18]:940istheforceresponsibleforthestructuralintegrityofatomicnucleiwhiletheweaknuclearforce[18]:951isresponsibleforthedecayofcertainnucleonsintoleptonsandothertypesofhadrons.[4][5]

    Thestrongforceistodayunderstoodtorepresenttheinteractionsbetweenquarksandgluonsasdetailedbythetheoryofquantumchromodynamics(QCD).[38]Thestrongforceisthefundamentalforcemediatedbygluons,actinguponquarks,antiquarks,andthegluonsthemselves.The(aptlynamed)stronginteractionisthe"strongest"ofthefourfundamentalforces.

  • http://en.wikipedia.org/wiki/Force 15/25

    FNrepresentsthenormalforceexertedontheobject.

    Thestrongforceonlyactsdirectlyuponelementaryparticles.However,aresidualoftheforceisobservedbetweenhadrons(thebestknownexamplebeingtheforcethatactsbetweennucleonsinatomicnuclei)asthenuclearforce.Herethestrongforceactsindirectly,transmittedasgluonswhichformpartofthevirtualpiandrhomesonswhichclassicallytransmitthenuclearforce(seethistopicformore).Thefailureofmanysearchesforfreequarkshasshownthattheelementaryparticlesaffectedarenotdirectlyobservable.Thisphenomenoniscalledcolorconfinement.

    TheweakforceisduetotheexchangeoftheheavyWandZbosons.Itsmostfamiliareffectisbetadecay(ofneutronsinatomicnuclei)andtheassociatedradioactivity.Theword"weak"derivesfromthefactthatthefieldstrengthissome1013timeslessthanthatofthestrongforce.Still,itisstrongerthangravityovershortdistances.Aconsistentelectroweaktheoryhasalsobeendevelopedwhichshowsthatelectromagneticforcesandtheweakforceareindistinguishableatatemperaturesinexcessofapproximately1015kelvins.SuchtemperatureshavebeenprobedinmodernparticleacceleratorsandshowtheconditionsoftheuniverseintheearlymomentsoftheBigBang.

    Nonfundamentalforces

    Someforcesareconsequencesofthefundamentalones.Insuchsituations,idealizedmodelscanbeutilizedtogainphysicalinsight.

    Normalforce

    Thenormalforceisduetorepulsiveforcesofinteractionbetweenatomsatclosecontact.Whentheirelectroncloudsoverlap,Paulirepulsion(duetofermionicnatureofelectrons)followsresultingintheforcewhichactsinadirectionnormaltothesurfaceinterfacebetweentwoobjects.[18]:93Thenormalforce,forexample,isresponsibleforthestructuralintegrityoftablesandfloorsaswellasbeingtheforcethatrespondswheneveranexternalforcepushesonasolidobject.Anexampleofthenormalforceinactionistheimpactforceonanobjectcrashingintoanimmobilesurface.[4][5]

    Friction

    Frictionisasurfaceforcethatopposesrelativemotion.Thefrictionalforceisdirectlyrelatedtothenormalforcewhichactstokeeptwosolidobjectsseparatedatthepointofcontact.Therearetwobroadclassificationsoffrictionalforces:staticfrictionandkineticfriction.

    Thestaticfrictionforce()willexactlyopposeforcesappliedtoanobjectparalleltoasurfacecontactuptothelimitspecifiedbythecoefficientofstaticfriction( )multipliedbythenormalforce().Inotherwordsthemagnitudeofthestaticfrictionforcesatisfiestheinequality:

    .

    Thekineticfrictionforce()isindependentofboththeforcesappliedandthemovementoftheobject.Thus,themagnitudeoftheforceequals:

    ,

    whereisthecoefficientofkineticfriction.Formostsurfaceinterfaces,thecoefficientofkineticfrictionislessthanthecoefficientofstaticfriction.

  • http://en.wikipedia.org/wiki/Force 16/25

    Fkistheforcethatrespondstotheloadonthespring

    Tension

    Tensionforcescanbemodeledusingidealstringswhicharemassless,frictionless,unbreakable,andunstretchable.Theycanbecombinedwithidealpulleyswhichallowidealstringstoswitchphysicaldirection.Idealstringstransmittensionforcesinstantaneouslyinactionreactionpairssothatiftwoobjectsareconnectedbyanidealstring,anyforcedirectedalongthestringbythefirstobjectisaccompaniedbyaforcedirectedalongthestringintheoppositedirectionbythesecondobject.[39]Byconnectingthesamestringmultipletimestothesameobjectthroughtheuseofasetupthatusesmovablepulleys,thetensionforceonaloadcanbemultiplied.Foreverystringthatactsonaload,anotherfactorofthetensionforceinthestringactsontheload.However,eventhoughsuchmachinesallowforanincreaseinforce,thereisacorrespondingincreaseinthelengthofstringthatmustbedisplacedinordertomovetheload.Thesetandemeffectsresultultimatelyintheconservationofmechanicalenergysincetheworkdoneontheloadisthesamenomatterhowcomplicatedthemachine.[4][5][40]

    Elasticforce

    Anelasticforceactstoreturnaspringtoitsnaturallength.Anidealspringistakentobemassless,frictionless,unbreakable,andinfinitelystretchable.Suchspringsexertforcesthatpushwhencontracted,orpullwhenextended,inproportiontothedisplacementofthespringfromitsequilibriumposition.[41]ThislinearrelationshipwasdescribedbyRobertHookein1676,forwhomHooke'slawisnamed.Ifisthedisplacement,theforceexertedbyanidealspringequals:

    whereisthespringconstant(orforceconstant),whichisparticulartothespring.Theminussignaccountsforthetendencyoftheforcetoactinoppositiontotheappliedload.[4][5]

    Continuummechanics

    Newton'slawsandNewtonianmechanicsingeneralwerefirstdevelopedtodescribehowforcesaffectidealizedpointparticlesratherthanthreedimensionalobjects.However,inreallife,matterhasextendedstructureandforcesthatactononepartofanobjectmightaffectotherpartsofanobject.Forsituationswherelatticeholdingtogethertheatomsinanobjectisabletoflow,contract,expand,orotherwisechangeshape,thetheoriesofcontinuummechanicsdescribethewayforcesaffectthematerial.Forexample,inextendedfluids,differencesinpressureresultinforcesbeingdirectedalongthepressuregradientsasfollows:

    whereisthevolumeoftheobjectinthefluidand isthescalarfunctionthatdescribesthepressureatalllocationsinspace.Pressuregradientsanddifferentialsresultinthebuoyantforceforfluidssuspendedingravitationalfields,windsinatmosphericscience,andtheliftassociatedwithaerodynamicsandflight.[4][5]

    Aspecificinstanceofsuchaforcethatisassociatedwithdynamicpressureisfluidresistance:abodyforcethatresiststhemotionofanobjectthroughafluidduetoviscosity.Forsocalled"Stokes'drag"theforceisapproximatelyproportionaltothevelocity,butoppositeindirection:

  • http://en.wikipedia.org/wiki/Force 17/25

    Whenthedragforce( )associatedwithairresistancebecomesequalinmagnitudetotheforceofgravityonafallingobject( ),theobjectreachesastateofdynamicequilibriumatterminalvelocity.

    Relationshipbetweenforce(F),torque(),andmomentumvectors(pandL)inarotatingsystem.

    where:

    isaconstantthatdependsonthepropertiesofthefluidandthedimensionsoftheobject(usuallythecrosssectionalarea),and

    isthevelocityoftheobject.[4][5]

    Moreformally,forcesincontinuummechanicsarefullydescribedbyastresstensorwithtermsthatareroughlydefinedas

    whereistherelevantcrosssectionalareaforthevolumeforwhichthestresstensorisbeingcalculated.Thisformalismincludespressuretermsassociatedwithforcesthatactnormaltothecrosssectionalarea(thematrixdiagonalsofthetensor)aswellassheartermsassociatedwithforcesthatactparalleltothecrosssectionalarea(theoffdiagonalelements).Thestresstensoraccountsforforcesthatcauseallstrains(deformations)includingalsotensilestressesandcompressions.[3][5]:133134[35]:3813811

    Fictitiousforces

    Thereareforceswhichareframedependent,meaningthattheyappearduetotheadoptionofnonNewtonian(thatis,noninertial)referenceframes.SuchforcesincludethecentrifugalforceandtheCoriolisforce.[42]Theseforcesareconsideredfictitiousbecausetheydonotexistinframesofreferencethatarenotaccelerating.[4][5]

    Becausetheseforcesarenotgenuinetheyarealsoreferredtoas"pseudoforces".[4]:1211

    Ingeneralrelativity,gravitybecomesafictitiousforcethatarisesinsituationswherespacetimedeviatesfromaflatgeometry.Asanextension,KaluzaKleintheoryandstringtheoryascribeelectromagnetismandtheotherfundamentalforcesrespectivelytothecurvatureofdifferentlyscaleddimensions,whichwouldultimatelyimplythatallforcesarefictitious.

    Rotationsandtorque

    Forcesthatcauseextendedobjectstorotateareassociatedwithtorques.Mathematically,thetorqueofaforceisdefinedrelativetoanarbitraryreferencepointasthecrossproduct:

    where

    isthepositionvectoroftheforceapplicationpointrelativetothereferencepoint.

    Torqueistherotationequivalentofforceinthesamewaythatangleistherotationalequivalentforposition,angularvelocityforvelocity,andangularmomentumformomentum.AsaconsequenceofNewton'sFirstLawofMotion,thereexistsrotational

  • http://en.wikipedia.org/wiki/Force 18/25

    inertiathatensuresthatallbodiesmaintaintheirangularmomentumunlessacteduponbyanunbalancedtorque.Likewise,Newton'sSecondLawofMotioncanbeusedtoderiveananalogousequationfortheinstantaneousangularaccelerationoftherigidbody:

    where

    isthemomentofinertiaofthebodyistheangularaccelerationofthebody.

    Thisprovidesadefinitionforthemomentofinertiawhichistherotationalequivalentformass.Inmoreadvancedtreatmentsofmechanics,wheretherotationoveratimeintervalisdescribed,themomentofinertiamustbesubstitutedbythetensorthat,whenproperlyanalyzed,fullydeterminesthecharacteristicsofrotationsincludingprecessionandnutation.

    Equivalently,thedifferentialformofNewton'sSecondLawprovidesanalternativedefinitionoftorque:

    [43]where istheangularmomentumoftheparticle.

    Newton'sThirdLawofMotionrequiresthatallobjectsexertingtorquesthemselvesexperienceequalandoppositetorques,[44]andthereforealsodirectlyimpliestheconservationofangularmomentumforclosedsystemsthatexperiencerotationsandrevolutionsthroughtheactionofinternaltorques.

    Centripetalforce

    Foranobjectacceleratingincircularmotion,theunbalancedforceactingontheobjectequals:[45]

    whereisthemassoftheobject,isthevelocityoftheobjectand isthedistancetothecenterofthecircularpathandistheunitvectorpointingintheradialdirectionoutwardsfromthecenter.Thismeansthattheunbalancedcentripetalforcefeltbyanyobjectisalwaysdirectedtowardthecenterofthecurvingpath.Suchforcesactperpendiculartothevelocityvectorassociatedwiththemotionofanobject,andthereforedonotchangethespeedoftheobject(magnitudeofthevelocity),butonlythedirectionofthevelocityvector.Theunbalancedforcethatacceleratesanobjectcanberesolvedintoacomponentthatisperpendiculartothepath,andonethatistangentialtothepath.Thisyieldsboththetangentialforcewhichacceleratestheobjectbyeitherslowingitdownorspeedingitupandtheradial(centripetal)forcewhichchangesitsdirection.[4][5]

    Kinematicintegrals

    Forcescanbeusedtodefineanumberofphysicalconceptsbyintegratingwithrespecttokinematicvariables.Forexample,integratingwithrespecttotimegivesthedefinitionofimpulse:[46]

    which,byNewton'sSecondLaw,mustbeequivalenttothechangeinmomentum(yieldingtheImpulsemomentumtheorem).

  • http://en.wikipedia.org/wiki/Force 19/25

    Similarly,integratingwithrespecttopositiongivesadefinitionfortheworkdonebyaforce:[4]:133

    whichisequivalenttochangesinkineticenergy(yieldingtheworkenergytheorem).[4]:133

    PowerPistherateofchangedW/dtoftheworkW,asthetrajectoryisextendedbyapositionchangeinatimeintervaldt:[4]:132

    with thevelocity.

    Potentialenergy

    Insteadofaforce,oftenthemathematicallyrelatedconceptofapotentialenergyfieldcanbeusedforconvenience.Forinstance,thegravitationalforceactinguponanobjectcanbeseenastheactionofthegravitationalfieldthatispresentattheobject'slocation.Restatingmathematicallythedefinitionofenergy(viathedefinitionofwork),apotentialscalarfieldisdefinedasthatfieldwhosegradientisequalandoppositetotheforceproducedateverypoint:

    Forcescanbeclassifiedasconservativeornonconservative.Conservativeforcesareequivalenttothegradientofapotentialwhilenonconservativeforcesarenot.[4][5]

    Conservativeforces

    Aconservativeforcethatactsonaclosedsystemhasanassociatedmechanicalworkthatallowsenergytoconvertonlybetweenkineticorpotentialforms.Thismeansthatforaclosedsystem,thenetmechanicalenergyisconservedwheneveraconservativeforceactsonthesystem.Theforce,therefore,isrelateddirectlytothedifferenceinpotentialenergybetweentwodifferentlocationsinspace,[47]andcanbeconsideredtobeanartifactofthepotentialfieldinthesamewaythatthedirectionandamountofaflowofwatercanbeconsideredtobeanartifactofthecontourmapoftheelevationofanarea.[4][5]

    Conservativeforcesincludegravity,theelectromagneticforce,andthespringforce.Eachoftheseforceshasmodelswhicharedependentonapositionoftengivenasaradialvectoremanatingfromsphericallysymmetricpotentials.[48]Examplesofthisfollow:

    Forgravity:

    whereisthegravitationalconstant,andisthemassofobjectn.

    Forelectrostaticforces:

    where iselectricpermittivityoffreespace,andistheelectricchargeofobjectn.

  • http://en.wikipedia.org/wiki/Force 20/25

    Forspringforces:

    whereisthespringconstant.[4][5]

    Nonconservativeforces

    Forcertainphysicalscenarios,itisimpossibletomodelforcesasbeingduetogradientofpotentials.Thisisoftenduetomacrophysicalconsiderationswhichyieldforcesasarisingfromamacroscopicstatisticalaverageofmicrostates.Forexample,frictioniscausedbythegradientsofnumerouselectrostaticpotentialsbetweentheatoms,butmanifestsasaforcemodelwhichisindependentofanymacroscalepositionvector.Nonconservativeforcesotherthanfrictionincludeothercontactforces,tension,compression,anddrag.However,foranysufficientlydetaileddescription,alltheseforcesaretheresultsofconservativeonessinceeachofthesemacroscopicforcesarethenetresultsofthegradientsofmicroscopicpotentials.[4][5]

    Theconnectionbetweenmacroscopicnonconservativeforcesandmicroscopicconservativeforcesisdescribedbydetailedtreatmentwithstatisticalmechanics.Inmacroscopicclosedsystems,nonconservativeforcesacttochangetheinternalenergiesofthesystem,andareoftenassociatedwiththetransferofheat.AccordingtotheSecondlawofthermodynamics,nonconservativeforcesnecessarilyresultinenergytransformationswithinclosedsystemsfromorderedtomorerandomconditionsasentropyincreases.[4][5]

    Unitsofmeasurement

    TheSIunitofforceisthenewton(symbolN),whichistheforcerequiredtoaccelerateaonekilogrammassatarateofonemeterpersecondsquared,orkgms2.[49]ThecorrespondingCGSunitisthedyne,theforcerequiredtoaccelerateaonegrammassbyonecentimeterpersecondsquared,orgcms2.Anewtonisthusequalto100,000dynes.

    ThegravitationalfootpoundsecondEnglishunitofforceisthepoundforce(lbf),definedastheforceexertedbygravityonapoundmassinthestandardgravitationalfieldof9.80665ms2.[49]Thepoundforceprovidesanalternativeunitofmass:oneslugisthemassthatwillacceleratebyonefootpersecondsquaredwhenactedonbyonepoundforce.[49]

    Analternativeunitofforceinadifferentfootpoundsecondsystem,theabsolutefpssystem,isthepoundal,definedastheforcerequiredtoaccelerateaonepoundmassatarateofonefootpersecondsquared.[49]TheunitsofslugandpoundalaredesignedtoavoidaconstantofproportionalityinNewton'sSecondLaw.

    Thepoundforcehasametriccounterpart,lesscommonlyusedthanthenewton:thekilogramforce(kgf)(sometimeskilopond),istheforceexertedbystandardgravityononekilogramofmass.[49]Thekilogramforceleadstoanalternate,butrarelyusedunitofmass:themetricslug(sometimesmugorhyl)isthatmasswhichacceleratesat1ms2whensubjectedtoaforceof1kgf.ThekilogramforceisnotapartofthemodernSIsystem,andisgenerallydeprecatedhoweveritstillseesuseforsomepurposesasexpressingaircraftweight,jetthrust,bicyclespoketension,torquewrenchsettingsandengineoutputtorque.Otherarcaneunitsofforceincludethesthnewhichisequivalentto1000Nandthekipwhichisequivalentto1000lbf.

  • http://en.wikipedia.org/wiki/Force 21/25

    Unitsofforcenewton(SIunit)

    dyne kilogramforce,kilopond poundforce poundal

    1N 1kgm/s2 =105dyn 0.10197kp 0.22481lbF 7.2330pdl

    1dyn =105N 1gcm/s2 1.0197106kp 2.2481106lbF 7.2330105pdl

    1kp =9.80665N =980665dyn gn(1kg) 2.2046lbF 70.932pdl

    1lbF 4.448222N 444822dyn 0.45359kp gn(1lb) 32.174pdl

    1pdl 0.138255N 13825dyn 0.014098kp 0.031081lbF 1lbft/s2

    Thevalueofgnasusedintheofficialdefinitionofthekilogramforceisusedhereforallgravitationalunits.

    SeealsoTonforce.

    Forcemeasurement

    Seeforcegauge,springscale,loadcell

    Seealso

    Ordersofmagnitude(force)

    Notes

    1. ^Newton'sPrincipiaMathematicaactuallyusedafinitedifferenceversionofthisequationbaseduponimpulse.SeeImpulse.

    2. ^"ItisimportanttonotethatwecannotderiveageneralexpressionforNewton'ssecondlawforvariablemasssystemsbytreatingthemassinF=dP/dt=d(Mv)asavariable.[...]WecanuseF=dP/dttoanalyzevariablemasssystemsonlyifweapplyittoanentiresystemofconstantmasshavingpartsamongwhichthereisaninterchangeofmass."[Emphasisasintheoriginal](Halliday,Resnick&Krane2001,p.199)

    3. ^"Anysingleforceisonlyoneaspectofamutualinteractionbetweentwobodies."(Halliday,Resnick&Krane2001,pp.7879)

    4. ^ForacompletelibraryonquantummechanicsseeQuantummechanicsReferences

    References

    1. ^Nave,C.R.(2014)."Force"(http://hyperphysics.phyastr.gsu.edu/hbase/force.html).Hyperphysics.Dept.ofPhysicsandAstronomy,GeorgiaStateUniversity.Retrieved15August2014.

    2. ^abHeath,T.L."TheWorksofArchimedes(1897).TheunabridgedworkinPDFform(19MB)"(http://www.archive.org/details/worksofarchimede029517mbp).InternetArchive.Retrieved20071014.

    3. ^abcdefghUniversityPhysics,Sears,Young&Zemansky,pp.1838

    4. ^abcdefghijklmnopqrstuvwxyzaaabFeynmanvolume1

    5. ^abcdefghijklmnopqrstuvwxyKleppner&Kolenkow2010

    6. ^abcWeinberg,S.(1994).DreamsofaFinalTheory.VintageBooksUSA.ISBN0679744088.7. ^Lang,HelenS.(1998).TheorderofnatureinAristotle'sphysics:placeandtheelements(1.publ.ed.).Cambridge:

  • http://en.wikipedia.org/wiki/Force 22/25

    CambridgeUniv.Press.ISBN9780521624534.8. ^Hetherington,NorrissS.(1993).Cosmology:Historical,Literary,Philosophical,Religious,andScientific

    Perspectives.GarlandReferenceLibraryoftheHumanities.p.100.ISBN0815310854.

    9. ^abDrake,Stillman(1978).GalileoAtWork.Chicago:UniversityofChicagoPress.ISBN0226162265

    10. ^abcdefNewton,Isaac(1999).ThePrincipiaMathematicalPrinciplesofNaturalPhilosophy.Berkeley:UniversityofCaliforniaPress.ISBN0520088174.ThisisarecenttranslationintoEnglishbyI.BernardCohenandAnneWhitman,withhelpfromJuliaBudenz.

    11. ^DiSalle,Robert(20020330)."SpaceandTime:InertialFrames"(http://plato.stanford.edu/entries/spacetimeiframes/).StanfordEncyclopediaofPhilosophy.Retrieved20080324.

    12. ^Howland,R.A.(2006).Intermediatedynamicsalinearalgebraicapproach(OnlineAusg.ed.).NewYork:Springer.pp.255256.ISBN9780387280592.

    13. ^Oneexceptiontothisruleis:Landau,L.D.Akhiezer,A.I.Lifshitz,A.M.(196).GeneralPhysicsmechanicsandmolecularphysics(FirstEnglished.).Oxford:PergamonPress.ISBN0080033040.Translatedby:J.B.Sykes,A.D.Petford,andC.L.Petford.LibraryofCongressCatalogNumber6730260.Insection7,pages1214,thisbookdefinesforceasdp/dt.

    14. ^Jammer,Max(1999).Conceptsofforce:astudyinthefoundationsofdynamics(Facsim.ed.).Mineola,N.Y.:DoverPublications.pp.220222.ISBN9780486406893.

    15. ^Noll,Walter(April2007)."OntheConceptofForce"(http://www.math.cmu.edu/~wn0g/Force.pdf)(pdf).CarnegieMellonUniversity.Retrieved28October2013.

    16. ^C.Hellingman(1992)."Newton'sthirdlawrevisited".Phys.Educ.27(2):112115.Bibcode:1992PhyEd..27..112H(http://adsabs.harvard.edu/abs/1992PhyEd..27..112H).doi:10.1088/00319120/27/2/011(https://dx.doi.org/10.1088%2F00319120%2F27%2F2%2F011)."QuotingNewtoninthePrincipia:ItisnotoneactionbywhichtheSunattractsJupiter,andanotherbywhichJupiterattractstheSunbutitisoneactionbywhichtheSunandJupitermutuallyendeavourtocomenearertogether."

    17. ^Dr.Nikitin(2007)."Dynamicsoftranslationalmotion"(http://physicshelp.info/physicsguide/mechanics/translational_dynamics.shtml).Retrieved20080104.

    18. ^abcdeCutnell&Johnson200319. ^"Seminar:VisualizingSpecialRelativity"(http://www.anu.edu.au/Physics/Searle/Obsolete/Seminar.html).The

    RelativisticRaytracer.Retrieved20080104.20. ^Wilson,JohnB."FourVectors(4Vectors)ofSpecialRelativity:AStudyofElegantPhysics"

    (http://SciRealm.com/4Vectors.html).TheScienceRealm:John'sVirtualSciTechUniverse.Archived(http://web.archive.org/web/20090626152836/http://www.austininc.com/SciRealm/4Vectors.html)fromtheoriginalon26June2009.Retrieved20080104.

    21. ^"IntroductiontoFreeBodyDiagrams"(http://eta.physics.uoguelph.ca/tutorials/fbd/intro.html).PhysicsTutorialMenu.UniversityofGuelph.Retrieved20080102.

    22. ^Henderson,Tom(2004)."ThePhysicsClassroom"(http://www.glenbrook.k12.il.us/GBSSCI/PHYS/Class/vectors/u3l1b.html).ThePhysicsClassroomandMathsoftEngineering&Education,Inc.Retrieved20080102.

    23. ^"StaticEquilibrium"(http://web.archive.org/web/20071019054156/http://www.uvi.edu/Physics/SCI3xxWeb/Structure/StaticEq.html).PhysicsStaticEquilibrium(forcesandtorques).UniversityoftheVirginIslands.Archivedfromtheoriginal(http://www.uvi.edu/Physics/SCI3xxWeb/Structure/StaticEq.html)onOctober19,2007.Retrieved20080102.

    24. ^abShifman,Mikhail(1999).ITEPlecturesonparticlephysicsandfieldtheory.WorldScientific.ISBN981022639X.

    25. ^Nave,CarlRod."PauliExclusionPrinciple"(http://hyperphysics.phyastr.gsu.edu/hbase/pauli.html).HyperPhysics.

  • http://en.wikipedia.org/wiki/Force 23/25

    UniversityofGuelph.Retrieved20131028.26. ^"Fermions&Bosons"(http://particleadventure.org/frameless/fermibos.html).TheParticleAdventure.Retrieved

    20080104.27. ^http://www.pha.jhu.edu/~dfehling/particle.gif28. ^Cook,A.H.(161601965)."ANewAbsoluteDeterminationoftheAccelerationduetoGravityattheNational

    PhysicalLaboratory"(http://www.nature.com/nature/journal/v208/n5007/abs/208279a0.html).Nature208(5007):279.Bibcode:1965Natur.208..279C(http://adsabs.harvard.edu/abs/1965Natur.208..279C).doi:10.1038/208279a0(https://dx.doi.org/10.1038%2F208279a0).Retrieved20080104.Checkdatevaluesin:|date=(help)

    29. ^abUniversityPhysics,Sears,Young&Zemansky,pp598230. ^"SirIsaacNewton:TheUniversalLawofGravitation"

    (http://csep10.phys.utk.edu/astr161/lect/history/newtongrav.html).Astronomy161TheSolarSystem.Retrieved20080104.

    31. ^Watkins,Thayer."PerturbationAnalysis,RegularandSingular"(http://www.sjsu.edu/faculty/watkins/perturb.htm).DepartmentofEconomics.SanJosStateUniversity.

    32. ^Kollerstrom,Nick(2001)."Neptune'sDiscovery.TheBritishCaseforCoPrediction."(http://web.archive.org/web/20051111190351/http://www.ucl.ac.uk/sts/nk/neptune/index.htm).UniversityCollegeLondon.Archivedfromtheoriginal(http://www.ucl.ac.uk/sts/nk/neptune/index.htm)on20051111.Retrieved20070319.

    33. ^Einstein,Albert(1916)."TheFoundationoftheGeneralTheoryofRelativity"(http://www.alberteinstein.info/gallery/gtext3.html)(PDF).AnnalenderPhysik49(7):769822.Bibcode:1916AnP...354..769E(http://adsabs.harvard.edu/abs/1916AnP...354..769E).doi:10.1002/andp.19163540702(https://dx.doi.org/10.1002%2Fandp.19163540702).Retrieved20060903.

    34. ^Coulomb,Charles(1784)."Recherchesthoriquesetexprimentalessurlaforcedetorsionetsurl'lasticitdesfilsdemetal".Histoiredel'AcadmieRoyaledesSciences:229269.

    35. ^abcFeynmanvolume236. ^Scharf,Toralf(2007).Polarizedlightinliquidcrystalsandpolymers(http://books.google.com/?

    id=CQNE13opFucC).JohnWileyandSons.p.19.ISBN0471740640.,Chapter2,p.19(http://books.google.com/books?id=CQNE13opFucC&pg=PA19)

    37. ^Duffin,William(1980).ElectricityandMagnetism,3rdEd.McGrawHill.pp.364383.ISBN007084111X.38. ^Stevens,Tab(10/07/2003)."QuantumChromodynamics:ADefinitionScienceArticles"

    (http://web.archive.org/web/20111016103116/http://www.physicspost.com/sciencearticle168.html).Archivedfromtheoriginal(http://www.physicspost.com/sciencearticle168.html)on20111016.Retrieved20080104.Checkdatevaluesin:|date=(help)

    39. ^"TensionForce"(http://www.mtsu.edu/~phys2010/Lectures/Part_2__L6__L11/Lecture_9/Tension_Force/tension_force.html).NonCalculusBasedPhysicsI.Retrieved20080104.

    40. ^Fitzpatrick,Richard(20060202)."Strings,pulleys,andinclines"(http://farside.ph.utexas.edu/teaching/301/lectures/node48.html).Retrieved20080104.

    41. ^Nave,CarlRod."Elasticity"(http://hyperphysics.phyastr.gsu.edu/hbase/permot2.html).HyperPhysics.UniversityofGuelph.Retrieved20131028.

    42. ^Mallette,Vincent(19822008)."InwitPublishing,Inc.andInwit,LLCWritings,LinksandSoftwareDistributionsTheCoriolisForce"(http://www.algorithm.com/inwit/writings/coriolisforce.html).PublicationsinScienceandMathematics,ComputingandtheHumanities.InwitPublishing,Inc.Retrieved20080104.

    43. ^Nave,CarlRod."Newton's2ndLaw:Rotation"(http://hyperphysics.phyastr.gsu.edu/HBASE/n2r.html).HyperPhysics.UniversityofGuelph.Retrieved20131028.

    44. ^Fitzpatrick,Richard(20070107)."Newton'sthirdlawofmotion"(http://farside.ph.utexas.edu/teaching/336k/lectures/node26.html).Retrieved20080104.

  • http://en.wikipedia.org/wiki/Force 24/25

    WikimediaCommonshasmediarelatedtoForces.

    LookupforceinWiktionary,thefreedictionary.

    Furtherreading

    Corben,H.C.PhilipStehle(1994).ClassicalMechanics.NewYork:Doverpublications.pp.2831.ISBN0486680630.Cutnell,JohnD.Johnson,KennethW.(2003).Physics,SixthEdition.Hoboken,NewJersey:JohnWiley&SonsInc.ISBN0471151831.Feynman,RichardP.LeightonSands,Matthew(2010).TheFeynmanlecturesonphysics.Vol.I:Mainlymechanics,radiationandheat(Newmillenniumed.).NewYork:BasicBooks.ISBN9780465024933.Feynman,RichardP.Leighton,RobertB.Sands,Matthew(2010).TheFeynmanlecturesonphysics.Vol.II:Mainlyelectromagnetismandmatter(Newmillenniumed.).NewYork:BasicBooks.ISBN9780465024940.Halliday,DavidResnick,RobertKrane,KennethS.(2001).Physicsv.1.NewYork:JohnWiley&Sons.ISBN0471320579.Kleppner,DanielKolenkow,RobertJ.(2010).Anintroductiontomechanics(3.printed.).Cambridge:CambridgeUniversityPress.ISBN0521198216.Parker,Sybil(1993)."force".EncyclopediaofPhysics.Ohio:McGrawHill.p.107,.ISBN0070514003.SearsF.,ZemanskyM.&YoungH.(1982).UniversityPhysics.Reading,Massachusetts:AddisonWesley.ISBN0201071991.Serway,RaymondA.(2003).PhysicsforScientistsandEngineers.Philadelphia:SaundersCollegePublishing.ISBN0534408427.Tipler,Paul(2004).PhysicsforScientistsandEngineers:Mechanics,OscillationsandWaves,Thermodynamics(5thed.).W.H.Freeman.ISBN0716708094.Verma,H.C.(2004).ConceptsofPhysicsVol1.(2004Reprinted.).BhartiBhavan.ISBN8177091875.

    Externallinks

    VideolectureonNewton'sthreelaws(http://ocw.mit.edu/OcwWeb/Physics/801PhysicsIFall1999/VideoLectures/detail/VideoSegmentIndexforL6.htm)byWalterLewinfromMITOpenCourseWareAJavasimulationonvectoradditionofforces(http://phy.hk/wiki/englishhtm/Vector.htm)Forcedemonstratedasanyinfluenceonanobjectthatchangestheobject'sshapeormotion(video)

    (http://farside.ph.utexas.edu/teaching/336k/lectures/node26.html).Retrieved20080104.45. ^Nave,CarlRod."CentripetalForce"(http://hyperphysics.phyastr.gsu.edu/hbase/cf.html).HyperPhysics.University

    ofGuelph.Retrieved20131028.46. ^Hibbeler,RussellC.(2010).EngineeringMechanics,12thedition.PearsonPrenticeHall.p.222.ISBN013

    6077919.47. ^Singh,SunilKumar(20070825)."Conservativeforce"(http://cnx.org/content/m14104/latest/).Connexions.

    Retrieved20080104.48. ^Davis,Doug."ConservationofEnergy"(http://www.ux1.eiu.edu/~cfadd/1350/08PotEng/ConsF.html).General

    physics.Retrieved20080104.

    49. ^abcdeWandmacher,CorneliusJohnson,Arnold(1995).MetricUnitsinEngineering.ASCEPublications.p.15.ISBN0784400709.

  • http://en.wikipedia.org/wiki/Force 25/25

    (http://www.youtube.com/watch?v=DkWKvMtdLYU)

    Retrievedfrom"http://en.wikipedia.org/w/index.php?title=Force&oldid=647074262"

    Categories: Naturalphilosophy Classicalmechanics Conceptsinphysics Force Physicalquantities

    Thispagewaslastmodifiedon14February2015,at09:10.TextisavailableundertheCreativeCommonsAttributionShareAlikeLicenseadditionaltermsmayapply.Byusingthissite,youagreetotheTermsofUseandPrivacyPolicy.WikipediaisaregisteredtrademarkoftheWikimediaFoundation,Inc.,anonprofitorganization.