1 dinamica molecular y el modelamiento de macromoleculas

88
1 Dinamica Molecular y el modelamiento de macromoleculas

Upload: dora-burns

Post on 11-Jan-2016

240 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 1 Dinamica Molecular y el modelamiento de macromoleculas

1

Dinamica Molecular y el

modelamiento de macromoleculas

Page 2: 1 Dinamica Molecular y el modelamiento de macromoleculas

2

Historical Perspective

1946 MD calculation 1960 force fields 1969 Levinthal’s paradox on protein folding 1970 MD of biological molecules 1971 protein data bank 1998 ion channel protein crystal structure 1999 IBM announces blue gene project

Page 3: 1 Dinamica Molecular y el modelamiento de macromoleculas

3

Proteins

Polypeptide chains made up of amino acids or residues linked by peptide bonds

20 aminoacids 50-500 residues, 1000-10000 atoms Native structure believed to correspond to energy minimum,

since proteins unfold when temperature is increased

Page 4: 1 Dinamica Molecular y el modelamiento de macromoleculas

4

Proteins: Local Motions

0.01-5 AA, 1 fs -0.1s Atomic fluctuations

• Small displacements for substrate binding in enzymes• Energy “source” for barrier crossing and other activated processes

(e.g., ring flips) Sidechain motions

• Opening pathways for ligand (myoglobin)• Closing active site

Loop motions• Disorder-to-order transition as part of virus formation

Page 5: 1 Dinamica Molecular y el modelamiento de macromoleculas

5

Page 6: 1 Dinamica Molecular y el modelamiento de macromoleculas

6

Levinthal paradox

Proteins simply can not fold on a reasonable time scale (Levinthal paradox; J. Chem. Phys., 1968, 65: 44-45)• Each bond connecting amino acids can have several (e.g., three)

possible states (conformations). A protein of, say, 101 AA could exist in 3100 = 5 x 1047 conformations. If the protein can sample these conformations at a rate of 1013/sec, 3 x 1020/year, it will take 1027 years to try them all. Nevertheless, proteins fold in a time scale of seconds.

Page 7: 1 Dinamica Molecular y el modelamiento de macromoleculas

7

Proteins: Rigid-Body Motions

1-10 AA, 1 ns – 1 s Helix motions

• Transitions between substrates (myoglobin) Hinge-bending motions

• Gating of active-site region (liver alcohol dehydroginase)• Increasing binding range of antigens (antibodies)

Page 8: 1 Dinamica Molecular y el modelamiento de macromoleculas

8

Quantum Mechanical Origins

Fundamental to everything is the Schrödinger equation•

• wave function

• H = Hamiltonian operator

• time independent form

Born-Oppenheimer approximation• electrons relax very quickly compared to nuclear motions

• nuclei move in presence of potential energy obtained by solving electron distribution for fixed nuclear configuration

it is still very difficult to solve for this energy routinely

• usually nuclei are heavy enough to treat classically

H it

( , , )R r t

Nuclear coordinates

Electronic coordinates

H E

22 im

H K U U

Page 9: 1 Dinamica Molecular y el modelamiento de macromoleculas

9

Force Field Methods

Too expensive to solve QM electronic energy for every nuclear configuration

Instead define energy using simple empirical formulas• “force fields” or “molecular mechanics”

Decomposition of the total energy

Force fields usually written in terms of pairwise additive interatomic potentials• with some exceptions

(1) (2) (3)( ) ( ) ( , ) ( , , )Ni i j i j ki i j i i j i k j

U u u u r r r r r r r

Single-atom energy(external field)

Atom-pair contribution 3-atom contribution

Neglect 3- and higher-order terms

Page 10: 1 Dinamica Molecular y el modelamiento de macromoleculas

10

Conformation optimization for molecular interaction

Molecular Mechanics Approach:

Page 11: 1 Dinamica Molecular y el modelamiento de macromoleculas

11

Energy minimisation

Calculation of how atoms should move to minimise TOTAL potential energy At minimum, forces on every

atom are zero.

Optimising structure to remove strain & steric clashes However, in general finds local rather than global minimum. Energy barriers are

not overcome even if much lower energy state is possible ie structures may be locked in. Hence not useful as a search strategy.

Page 12: 1 Dinamica Molecular y el modelamiento de macromoleculas

12

Energy minimisation

Potential energy depends on many parameters Problem of finding minimum value of a function with >1 parameters. Know value of

function at several points. Grid search is computationally

not feasible Methods

• Steepest descents

• Conjugate gradients

Page 13: 1 Dinamica Molecular y el modelamiento de macromoleculas

13

Molecular Dynamics: Introduction

Newton’s second law of motion

Page 14: 1 Dinamica Molecular y el modelamiento de macromoleculas

14

Molecular dynamics

F=ma F is calculated from molecular mechanical potential. Model conformational changes. Calculate time-dependent properties (transport properties).

Page 15: 1 Dinamica Molecular y el modelamiento de macromoleculas

15

We need to know

The motion of the

atoms in a molecule, x(t) and therefore,

the potential energy, V(x)

Molecular Dynamics: Introduction

Page 16: 1 Dinamica Molecular y el modelamiento de macromoleculas

16Molecular Dynamics: Introduction

How do we describe the potential energy V(x) for amolecule?Potential Energy includes terms for

Bond stretching

Angle Bending

Torsional rotation

Improper dihedrals

Page 17: 1 Dinamica Molecular y el modelamiento de macromoleculas

17

Molecular Dynamics: Introduction

Potential energy includes terms for (contd.)

Electrostatic

Interactions

van der Waals

Interactions

Page 18: 1 Dinamica Molecular y el modelamiento de macromoleculas

18

Molecular Dynamics: Introduction

To do this, we should knowat given time t,

initial position of the atom

x1 its velocity

v1 = dx1/dt and the acceleration

a1 = d2x1/dt2 = m-1F(x1)

Page 19: 1 Dinamica Molecular y el modelamiento de macromoleculas

19

Molecular Dynamics: Introduction

The position x2 , of the atom after time interval t would be,

and the velocity v2 would be, tvxx 112

tdx

dVmvtxFmvtavv x

1

111

11112 )(

Page 20: 1 Dinamica Molecular y el modelamiento de macromoleculas

20

Molecular Dynamics: Introduction

In general, given the values x1, v1 and the potential energy V(x), the molecular trajectory x(t) can be calculated, using,

tdx

xdVmvv

tvxx

ixii

iii

1

)(11

11

Page 21: 1 Dinamica Molecular y el modelamiento de macromoleculas

21

How a molecule changes during MD

Page 22: 1 Dinamica Molecular y el modelamiento de macromoleculas

22

The Necessary Ingredients

Description of the structure: atoms and connectivity Initial structure: geometry of the system Potential Energy Function: force field

AMBERCVFFCFF95Universal

Page 23: 1 Dinamica Molecular y el modelamiento de macromoleculas

23

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 24: 1 Dinamica Molecular y el modelamiento de macromoleculas

24

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 25: 1 Dinamica Molecular y el modelamiento de macromoleculas

25

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 26: 1 Dinamica Molecular y el modelamiento de macromoleculas

26

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 27: 1 Dinamica Molecular y el modelamiento de macromoleculas

27

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 28: 1 Dinamica Molecular y el modelamiento de macromoleculas

28

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 29: 1 Dinamica Molecular y el modelamiento de macromoleculas

29

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

Repulsion

Page 30: 1 Dinamica Molecular y el modelamiento de macromoleculas

30

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

Repulsion

Page 31: 1 Dinamica Molecular y el modelamiento de macromoleculas

31

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

- +- +

Repulsion

Attraction

Page 32: 1 Dinamica Molecular y el modelamiento de macromoleculas

32

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

-+-+

Repulsion

Attraction

Page 33: 1 Dinamica Molecular y el modelamiento de macromoleculas

33

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

-+-+

Repulsion

Attraction

-+

+- +

Page 34: 1 Dinamica Molecular y el modelamiento de macromoleculas

34

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

-+-+

Repulsion

Attraction

+-+

+ -++-+

+-+

u(2)

+- +

u(2)

u(N)

Page 35: 1 Dinamica Molecular y el modelamiento de macromoleculas

35

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

-+-+

Repulsion

Attraction

+-+

+ -+

+-

+-+

u(2)

+- +

u(2)

u(N)

Page 36: 1 Dinamica Molecular y el modelamiento de macromoleculas

36

Modeling Potential energy

U(r) U(req ) dUdr rreq

(r req ) 12

d2Udr2

rreq

(r req )2

1

3

d3U

drrreq

(r req )3 ....1

n!

dnU

drn

rreq

(r req )n

Page 37: 1 Dinamica Molecular y el modelamiento de macromoleculas

37

Modeling Potential energy

dU

dr rreq

(r req )

U(r) 1

2

d2U

dr2

rreq

(r req )2 1

2kAB (r req )2

U(req )

U(r) 1

2

d2U

dr2

rreq

(r req )2

0 at minimum0

Page 38: 1 Dinamica Molecular y el modelamiento de macromoleculas

38

Stretch Energy

Expand energy about equilibrium position

Model fails in strained geometries• better model is the Morse potential

22

12 12 12 12 12 122( ) ( ) ( ) ( )

o o

o o o

r r r r

dU d UU r U r r r r r

dr dr

minimumdefine

212 12 12( ) ( )oU r k r r

(neglect)

harmonic

122

12( ) 1 rU r D e

dissociation energy force constant

250

200

150

100

50

0

Ene

rgy

(kca

l/mol

e)

0.80.60.40.20.0-0.2-0.4

Stretch (Angstroms)

Morse

Page 39: 1 Dinamica Molecular y el modelamiento de macromoleculas

39

Bending Energy

Expand energy about equilibrium position

• improvements based on including higher-order terms

Out-of-plane bending

22

2( ) ( ) ( ) ( )

o o

o o odU d UU U

d d

minimumdefine

2( ) ( )oU k

(neglect)

harmonic

2( ) ( )oU k

u(4)

Page 40: 1 Dinamica Molecular y el modelamiento de macromoleculas

40

Torsional Energy

Two new features• periodic

• weak (Taylor expansion in not appropriate)

Fourier series

• terms are included to capture appropriate minima/maximadepends on substituent atoms

– e.g., ethane has three mimum-energy conformations• n = 3, 6, 9, etc.

depends on type of bond– e.g. ethane vs. ethylene

• usually at most n = 1, 2, and/or 3 terms are included

1( ) cos( )nn

U U n

Page 41: 1 Dinamica Molecular y el modelamiento de macromoleculas

41

Van der Waals Attraction

Correlation of electron fluctuations Stronger for larger, more polarizable molecules

• CCl4 > CH4 ; Kr > Ar > He

Theoretical formula for long-range behavior

Only attraction present between nonpolar molecules• reason that Ar, He, CH4, etc. form liquid phases

a.k.a. “London” or “dispersion” forces

-+-+ - +- +

86

( )attvdW

CU O r

r

Page 42: 1 Dinamica Molecular y el modelamiento de macromoleculas

42

Van der Waals Repulsion Overlap of electron clouds Theory provides little guidance on form of model Two popular treatments

inverse power exponential typically n ~ 9 - 12 two parameters

Combine with attraction term• Lennard-Jones model Exp-6

repvdW n

AU

r

rep BrvdWU Ae

12 6

A CU

r r 6

Br CU Ae

r

a.k.a. “Buckingham” or “Hill”

10

8

6

4

2

0

2.01.81.61.41.21.0

LJ Exp-6

Exp-6 repulsion is slightly softer

20

15

10

5

0

x103

8642

Beware of anomalous Exp-6 short-range attraction

Page 43: 1 Dinamica Molecular y el modelamiento de macromoleculas

43

Electrostatics 1.

Interaction between charge inhomogeneities Modeling approaches

• point charges

• point multipoles

Point charges• assign Coulombic charges to several points in

the molecule

• total charge sums to charge on molecule (usually zero)

• Coulomb potential

very long ranged

0( )

4i jq q

U rr

1.5

1.0

0.5

0.0

-0.5

-1.0

4321

Lennard-Jones Coulomb

Page 44: 1 Dinamica Molecular y el modelamiento de macromoleculas

44

Electrostatics 2. At larger separations, details of charge distribution are less important Multipole statistics capture basic features

• Dipole

• Quadrupole

• Octopole, etc.

Point multipole models based on long-range behavior• dipole-dipole

• dipole-quadrupole

• quadrupole-quadrupole

i iiq r

i i iiqQ r r

Vector

Tensor

0, 0Q

0, 0Q

Q

Q

1 21 2 1 23

ˆ ˆˆ ˆ ˆ ˆ3( )( ) ( )ddur

r r

21 21 2 1 2 24

3 ˆ ˆˆ ˆ ˆˆ ˆ ˆ( ) 5( ) 1 2( )( )2dQ

Qu Q Q

r

r r r

2 2 2 2 21 21 2 12 1 2 1 2 125

31 5 5 2 35 20

4QQQ Q

u c c c c c c c cr

Axially symmetric quadrupole

Page 45: 1 Dinamica Molecular y el modelamiento de macromoleculas

45

Polarization

Charge redistribution due to influence of surrounding molecules• dipole moment in bulk different

from that in vacuum

Modeled with polarizable charges or multipoles Involves an iterative calculation

• evaluate electric field acting on each charge due to other charges

• adjust charges according to polarizability and electric field

• re-compute electric field and repeat to convergence

Re-iteration over all molecules required if even one is moved

+ -+

+-

+-+

+ -++-+

+-+

Page 46: 1 Dinamica Molecular y el modelamiento de macromoleculas

46

Polarization

ind E

ind ,i Ei

Ei q jrij

rij3

ji

ijrij

3ji

3rij

rij

rij

1

Approximation

Electrostatic field does not include contributions from atom i

Page 47: 1 Dinamica Molecular y el modelamiento de macromoleculas

47

Common Approximations in Molecular Models Rigid intramolecular degrees of freedom

• fast intramolecular motions slow down MD calculations

Ignore hydrogen atoms• united atom representation

Ignore polarization• expensive n-body effect

Ignore electrostatics Treat whole molecule as one big atom

• maybe anisotropic

Model vdW forces via discontinuous potentials Ignore all attraction Model space as a lattice

• especially useful for polymer molecules

Qualitative models

Page 48: 1 Dinamica Molecular y el modelamiento de macromoleculas

48

Molecular Dynamics: Introduction

Equation for covalent terms in P.E.

)](cos1[)(

)()(

02

0

20

20

nAk

kllkRV

torsions

n

impropers

anglesbonds

lbonded

Page 49: 1 Dinamica Molecular y el modelamiento de macromoleculas

49

Molecular Dynamics: Introduction

Equation for non-bonded terms in P.E.

ijr

ji

ij

ij

ij

ij

ji

nonbonded r

qq

r

r

r

rijRV

0

6min

12min

4])(2)[(()(

Page 50: 1 Dinamica Molecular y el modelamiento de macromoleculas

50

-14 to –130.5 to 1Torsional vibration of buried

groups

-11 to –100.5 to 1Rotation of side chains at

surface

-12 to –111 to 2Elastic vibration of globular

region

-14 to –130.2 to 0.5Relative vibration of bonded

atoms

Log10 of characteristic time

(s)Spatial extent (nm)Motion

An overview of various motions in proteins (1)

Page 51: 1 Dinamica Molecular y el modelamiento de macromoleculas

51

Log10 of characteristic time (s)

Spatial Extent (nm)

Motion

-5 to 2???Protein folding

-5 to 10.5 to 1Local denaturation

-5 to 00.5 to 4Allosteric transitions

-4 to 00.5Rotation of medium-sized side chains

in interior

-11 to –71 to 2Relative motion of different globular

regions (hinge bending)

An overview of various motions in proteins (2)

Page 52: 1 Dinamica Molecular y el modelamiento de macromoleculas

52

A typical MD simulation protocol

Initial random structure generation Initial energy minimization Equilibration Dynamics run – with capture of conformations at regular

intervals Energy minimization of each captured conformation

Page 53: 1 Dinamica Molecular y el modelamiento de macromoleculas

53

Essential Parameters for MD (to be set by user)

Temperature Pressure Time step Dielectric constant Force field Durations of equilibration and MD run pH effect (addition of ions)

Page 54: 1 Dinamica Molecular y el modelamiento de macromoleculas

54

STARTING DNA MODEL

Page 55: 1 Dinamica Molecular y el modelamiento de macromoleculas

55

DNA MODEL WITH IONS

Page 56: 1 Dinamica Molecular y el modelamiento de macromoleculas

56

DNA in a box of water

Page 57: 1 Dinamica Molecular y el modelamiento de macromoleculas

57

SNAPSHOTS

Page 58: 1 Dinamica Molecular y el modelamiento de macromoleculas

58

Protein dynamics study

Ion channel / water channel Mechanical properties

• Protein stretching

• DNA bending

Movie downloaded from theoreticla biophysics group, UIUC

Page 59: 1 Dinamica Molecular y el modelamiento de macromoleculas

59

),()(),( jiHBijLJjiww XXUrUXXU

612

4)(ij

LJ

ij

LJLJijLJ rr

rU

Molecular Interactions

)1()1()(),(3

1,

ijllk

ijkHBijHBjiHB ujGuiGrrGXXU

)2/exp()( 22 xxG

water-water interaction

van der Waals’ term

Hydrogen bonding term

ion-water interaction

,

charge ),()(),( jiijLJjiiw XXUrUXXU

ij

ijHBjiij r

rzzrU

)exp()(charge

Page 60: 1 Dinamica Molecular y el modelamiento de macromoleculas

60

Page 61: 1 Dinamica Molecular y el modelamiento de macromoleculas

61

Average number of hydrogen bonds within the first water shell around an ion

Page 62: 1 Dinamica Molecular y el modelamiento de macromoleculas

62

Page 63: 1 Dinamica Molecular y el modelamiento de macromoleculas

63

Solvent dielectric models

V QiQ j

rij

Effetive dielectric constant

eff r r r 1

2rS 2 2rS 2 e rS

S 0.15Ă… 1 ~ 0.3Ă… 1

Page 64: 1 Dinamica Molecular y el modelamiento de macromoleculas

64

Introduction to Force FieldsIntroduction to Force Fields

•Sophisticated (though imperfect!) mathematical function

•Returns energy as a function of conformation

It looks something like this …

U(conformation) = Ebond + Eangle + Etors + Evdw + Eelec+ …

Page 65: 1 Dinamica Molecular y el modelamiento de macromoleculas

65

Why do we need force field? Force field and potential energy surface.

• Changes in the energy of a system can be considered as movements on a multidimentional surface call the “energy surface”. Force is the first derivative of the energy.

In molecular mechanics approach, the dimension of potential surface is 3N, N is number of particles.

The probability of the molecular system stay in certain conformations can be calculated if the underlying potential is known.

Page 66: 1 Dinamica Molecular y el modelamiento de macromoleculas

66

Three types of force field Quantum mechanics (Schrodinger equation for electrons),

usually deal with systems with less than 100 atoms. Empirical force field: molecular mechanics (for atoms), can

be used for systems up to millions of atoms. Statistical potential (flexible), no restriction.

Page 67: 1 Dinamica Molecular y el modelamiento de macromoleculas

67

Source of FF componentsSource of FF components

•Geometrical terms: bond, angle, torsion & vdw parameters come from empirical data.

•Electrostatic charges: two problems arise no exp.data for charges basis underlying molec. model

Page 68: 1 Dinamica Molecular y el modelamiento de macromoleculas

68

Molecular mechanical force field

Potential is the summation of the following terms : Bond stretching, Angle bending, Torsion rotation, Non-bonded interactions

• Vdw interaction, • Electrostatic interaction.

(Hydrogen bonds). (Implicit solvent). …

Page 69: 1 Dinamica Molecular y el modelamiento de macromoleculas

69

Figures are taken from NIH guide of molecular modeling

Page 70: 1 Dinamica Molecular y el modelamiento de macromoleculas

70

Page 71: 1 Dinamica Molecular y el modelamiento de macromoleculas

71

Page 72: 1 Dinamica Molecular y el modelamiento de macromoleculas

72

non-bonded terms

Page 73: 1 Dinamica Molecular y el modelamiento de macromoleculas

73

Class I CHARMM CHARMm (Accelrys) AMBER OPLS/AMBER/Schrödinger ECEPP (free energy force field) GROMOS

Class II CFF95 (Biosym/Accelrys) MM3 MMFF94 (CHARMM, Macromodel, elsewhere) UFF, DREIDING

Common empirical force fields

Page 74: 1 Dinamica Molecular y el modelamiento de macromoleculas

74

Assumptions

Hydrogens often not explicitly included (intrinsic hydrogen methods)• “Methyl carbon” equated with 1 C and 3 Hs

System not far from equilibrium geometry (harmonic) Solvent is vacuum or simple dielectric

Page 75: 1 Dinamica Molecular y el modelamiento de macromoleculas

75

Assumptions:Harmonic Approximation

8.35E-28 8.77567E+14 20568787140 2.03098E-18 1.05374E-188.35E-28 8.77567E+14 20568787140 1.77569E-18 9.66155E-198.35E-28 8.77567E+14 20568787140 1.54682E-18 8.82365E-198.35E-28 8.77567E+14 20568787140 1.34201E-18 8.02375E-198.35E-28 8.77567E+14 20568787140 1.15913E-18 7.26185E-198.35E-28 8.77567E+14 20568787140 9.96207E-19 6.53795E-198.35E-28 8.77567E+14 20568787140 8.51451E-19 5.85205E-198.35E-28 8.77567E+14 20568787140 7.23209E-19 5.20415E-198.35E-28 8.77567E+14 20568787140 6.09973E-19 4.59425E-198.35E-28 8.77567E+14 20568787140 5.10362E-19 4.02235E-198.35E-28 8.77567E+14 20568787140 4.2311E-19 3.48845E-198.35E-28 8.77567E+14 20568787140 3.47061E-19 2.99255E-198.35E-28 8.77567E+14 20568787140 2.81155E-19 2.53465E-198.35E-28 8.77567E+14 20568787140 2.24426E-19 2.11475E-198.35E-28 8.77567E+14 20568787140 1.75987E-19 1.73285E-198.35E-28 8.77567E+14 20568787140 1.35031E-19 1.38895E-198.35E-28 8.77567E+14 20568787140 1.0082E-19 1.08305E-198.35E-28 8.77567E+14 20568787140 7.26787E-20 8.15147E-208.35E-28 8.77567E+14 20568787140 4.99924E-20 5.85247E-208.35E-28 8.77567E+14 20568787140 3.22001E-20 3.93347E-208.35E-28 8.77567E+14 20568787140 1.87901E-20 2.39447E-208.35E-28 8.77567E+14 20568787140 9.29638E-21 1.23547E-208.35E-28 8.77567E+14 20568787140 3.29443E-21 4.56475E-21

Empirical Potential for Hydrogen Molecule

0

2E-19

4E-19

6E-19

8E-19

1E-18

1.2E-18

1.4E-18

0 0.5 1 1.5 2 2.5 3 3.5 4

Page 76: 1 Dinamica Molecular y el modelamiento de macromoleculas

76

Assumptions:Harmonic Approximation

d2Udx 2

x0

6.45 102 kgs2

k

HO k m 2

k

6.45 102 kg

s2

1.67 10 27 kg6.215 1014 Hz

2

9.8911013 Hz 3.30 103cm 1(Exp : 4.395 103cm 1)

Page 77: 1 Dinamica Molecular y el modelamiento de macromoleculas

77

                                                                                 

Brief History of FFBrief History of FF

Page 78: 1 Dinamica Molecular y el modelamiento de macromoleculas

78

Force Field classificationForce Field classification

1.- with rigid/partially rigid geometries

ECEPP, …

2.- without electrostatics

SYBYL, …

3.- simple diagonal FF

Weiner, GROMOS, CHARMm, OPLS/AMBER, …

4.- more complex FF

MM2, MM3, MMFF, …

Page 79: 1 Dinamica Molecular y el modelamiento de macromoleculas

79

Force Field Electrostatics van der Waals

CHARMm empirical fit to quantum mechanics dimers

empirical (x-ray, crystals)

GROMOS empirical empirical (x-ray, crystals)

OPLS/AMBER empirical (Monte Carlo on liquids)

empirical (liquids)

Weiner ESP fit (STO-3G) empirical (x-ray, crystals)

Cornell RESP fit (6-31G*) empirical (liquids)

Comparison of the simple diagonal FFComparison of the simple diagonal FF

Page 80: 1 Dinamica Molecular y el modelamiento de macromoleculas

80

Transferability

AMBER (Assisted Model Building Energy Refinement)• Specific to proteins and nucleic acids

CHARMM (Chemistry at Harvard Macromolecular Mechanics)• Specific to proteins and nucleic acids • Widely used to model solvent effects• Molecular dynamics integrator

Page 81: 1 Dinamica Molecular y el modelamiento de macromoleculas

81

Transferability

MM? – (Allinger et. al.) • Organic molecules

MMFF (Merck Molecular Force Field)• Organic molecules

• Molecular Dynamics

Tripos/SYBYL• Organic and bio-organic molecules

Page 82: 1 Dinamica Molecular y el modelamiento de macromoleculas

82

Transferability

UFF (Universal Force Field)• Parameters for all elements

• Inorganic systems

YETI • Parameterized to model non-bonded interactions

• Docking (AmberYETI)

Page 83: 1 Dinamica Molecular y el modelamiento de macromoleculas

83

MMFF Energy

Electrostatics (ionic compounds) • D – Dielectric Constant

• - electrostatic buffering constant

nij

jiticelectrosta

RD

qqE

Page 84: 1 Dinamica Molecular y el modelamiento de macromoleculas

84

MMFF Energy

Analogous to Lennard-Jones 6-12 potential• London Dispersion Forces

• Van der Waals Repulsions

2

07.0

07.1

07.0

07.17*7

7*7

*

*

ijij

ij

ijij

ijijVDW

RR

R

RR

RE

The form for the repulsive part has no physical basis and is for computational convenience when working with largemacromolecules. K. Gilbert: Force fields like MM2 which is used for smaller organic systems will use a Buckingham potential (or expontential) which accurately reflects the chemistry/physics.

Page 85: 1 Dinamica Molecular y el modelamiento de macromoleculas

85

Pros and Cons

N >> 1000 atoms Easily constructed

Accuracy Not robust enough to describe

subtle chemical effects• Hydrophobicity• Excited States• Radicals

Does not reproduce quantal nature

Page 86: 1 Dinamica Molecular y el modelamiento de macromoleculas

86

Simple Statistics on MD Simulation

Atoms in a typical protein and water simulation 32000 Approximate number of interactions in force calculation 109 Machine instructions per force calculation 1000 Total number of machine instructions 1023

Typical time-step size 10–15 s Number of MD time steps 1011 steps Physical time for simulation 10–4 s Total calculation time (CPU: P4-3.0G ) days 10,000

Page 87: 1 Dinamica Molecular y el modelamiento de macromoleculas

87

Hardware Strategies

Parallel computation • PC cluster• IBM (The blue gene), 106 CPU

Massive distributive computing• Grid computing (formal and in the future) • Server to individual client (now in inexpensive)

Examples: SETI, folding@home, genome@homeprotein@CBL

Page 88: 1 Dinamica Molecular y el modelamiento de macromoleculas

88

# publications/year mentioning FF used to model proteins