20110627_modulii_materikuliahaljabarlinear

14
o PERSAMAAN LINEAR & MATRIKS Persamaan linear dapat dinyatakan sebagai matriks. Misalnya persamaan: 3x 1 + 4x 2 − 2 x 3 = 5 x 1 − 5x 2 + 2x 3 = 7 2x 1 + x 2 − 3x 3 = 9 dapat dinyatakan dalam matriks gandengan / augmented matrix (matriks teraugmentasi )sebagai berikut Penyelesaian persamaan linier dalam bentuk matriks dapat dilakukan melalui beberapa cara, yaitu dengan eliminasi Gauss atau dapat juga dengan cara eliminasi Gauss-Jordan. Namun, suatu sistem persamaan linier dapat diselesaikan dengan eliminasi Gauss untuk mengubah bentuk matriks teraugmentasi ke dalam bentuk eselon-baris tanpa menyederhanakannya. Cara ini disebut dengan substitusi balik. Sebuah sisitem persamaan linier dapat dikatakan homogen apabila mempunyai bentuk : a 11 x 1 + a 12 x 2 + ... + a 1n x n = 0 a 21 x 1 + a 22 x 2 + ... + a 2n x n = 0 a m1 x 1 + a m2 x 2 + ... + a mn x n = 0 Setiap sistem persamaan linier yang homogen bersifat adalah tetap apabila semua sistem mepunyai x 1 = 0 , x 2 = 0 , ... , x n = 0 sebagai penyelesaian. Penyelesaian ini disebut solusi trivial. Apabila mempunyai penyelesaian yang lain maka disebut solusi nontrivial. Penyelesaian Persamaan Linear dengan Matriks Bentuk Eselon-baris Matriks dapat dikatakan Eselon-baris apabila memenuhi persyaratan berikut :

Upload: dwie-arie-wibowo

Post on 04-Aug-2015

19 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

o

PERSAMAAN LINEAR & MATRIKSPersamaan linear dapat dinyatakan sebagai matriks. Misalnya persamaan:

3x1 + 4x2 − 2 x3 = 5x1 − 5x2 + 2x3 = 72x1 + x2 − 3x3 = 9

dapat dinyatakan dalam matriks gandengan / augmented matrix (matriks teraugmentasi )sebagai berikut

Penyelesaian persamaan linier dalam bentuk matriks dapat dilakukan melalui beberapa cara, yaitu dengan eliminasi Gauss atau dapat juga dengan cara eliminasi Gauss-Jordan. Namun, suatu sistem persamaan linier dapat diselesaikan dengan eliminasi Gauss untuk mengubah bentuk matriks teraugmentasi ke dalam bentuk eselon-baris tanpa menyederhanakannya. Cara ini disebut dengan substitusi balik.

Sebuah sisitem persamaan linier dapat dikatakan homogen apabila mempunyai bentuk :

a11x1 + a12x2 + ... + a1nxn = 0a21x1 + a22x2 + ... + a2nxn = 0am1x1 + am2x2 + ... + amnxn = 0

Setiap sistem persamaan linier yang homogen bersifat adalah tetap apabila semua sistem mepunyai x1 = 0 , x2 = 0 , ... , xn = 0 sebagai penyelesaian. Penyelesaian ini disebut solusi trivial. Apabila mempunyai penyelesaian yang lain maka disebut solusi nontrivial.

Penyelesaian Persamaan Linear dengan Matriks

Bentuk Eselon-baris

Matriks dapat dikatakan Eselon-baris apabila memenuhi persyaratan berikut :

1.) Di setiap baris, angka pertama selain 0 harus 1 (leading 1). 2.) Jika ada baris yang semua elemennya nol, maka harus dikelompokkan di baris akhir dari matriks.3.) Jika ada baris yang leading 1 maka leading 1 di bawahnya, angka 1-nya harus berada lebih kanan dari leading 1 di atasnya.4.) Jika kolom yang memiliki leading 1 angka selain 1 adalah nol maka matriks tersebut disebut Eselon-baris

tereduksi

Contoh:

syarat 1): baris pertama disebut dengan leading 1

Page 2: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

syarat 2): baris ke-3 dan ke-4 memenuhi syarat 2)

syarat 3) : baris pertama dan ke-2 memenuhi syarat 3

syarat 4): matriks dibawah ini memenuhi syarat ke 4 dan disebut Eselon-baris tereduksi

Operasi Eliminasi Gauss

Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah dengan melakukan operasi baris sehingga matriks tersebut menjadi matriks yang Eselon-baris. Ini dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris, lakukan substitusi balik untuk mendapatkan nilai dari variabel-variabel tersebut.

Contoh: Diketahui persamaan linear

x + 2y + z = 6x + 3y + 2z = 92x + y + 2z = 12

Tentukan Nilai x, y dan z

Jawab:

Bentuk persamaan tersebut ke dalam matriks:

Page 3: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

Operasikan Matriks tersebut

Baris ke 2 dikurangi baris ke 1

Baris ke 3 dikurangi 2 kali baris ke 1

Baris ke 3 ditambah 3 kali baris ke 2

Baris ke 3 dibagi dengan 3 (Matriks menjadi Eselon-baris)

Maka mendapatkan 3 persamaan linier baru yaitu

x + 2y + z = 6y + z = 3z = 3

Kemudian lakukan substitusi balik maka didapatkan:

y + z = 3y + 3 = 3y = 0x + 2y + z = 6x + 0 + 3 = 6x = 3

Jadi nilai dari x = 3 , y = 0 ,dan z = 3

Operasi Eliminasi Gauss-Jordan

Eliminasi Gauss-Jordan adalah pengembangan dari eliminasi Gauss yang hasilnya lebih sederhana. Caranya adalah dengan meneruskan operasi baris dari eliminasi Gauss sehingga menghasilkan matriks yang Eselon-baris tereduksi. Ini juga dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris tereduksi, maka langsung dapat ditentukan nilai dari variabel-variabelnya tanpa substitusi balik.

Page 4: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

Contoh: Diketahui persamaan linear

x + 2y + 3z = 32x + 3y + 2z = 32x + y + 2z = 5

Tentukan Nilai x, y dan z

Jawab:

Bentuk persamaan tersebut ke dalam matriks:

Operasikan Matriks tersebut

Baris ke 2 dikurangi 2 kali baris ke 1

Baris ke 3 dikurangi 2 kali baris ke 1

Baris ke 3 dikurangi 3 kali baris ke 2

Baris ke 3 dibagi 8 dan baris ke 2 dibagi -1

Baris ke 2 dikurangi 4 kali baris ke 3

Baris ke 1 dikurangi 3 kali baris ke 3

Page 5: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

Baris ke 1 dikurangi 2 kali baris ke 2 (Matriks menjadi Eselon-baris tereduksi)

Maka didapatkan nilai dari x = 2 , y = − 1 ,dan z = 1

Determinan

Determinan adalah suatu fungsi tertentu yang menghubungkan suatu bilangan real dengan suatu matriks bujursangkar.

Sebagai contoh, kita ambil matriks A2x2

A = tentukan determinan A

untuk mencari determinan matrik A maka,

detA = ad - bc

Determinan dengan Ekspansi Kofaktor

Determinan dengan Minor dan kofaktor

A = tentukan determinan A

Pertama buat minor dari a11

M11 = = detM = a22a33 x a23a32

Kemudian kofaktor dari a11 adalah

c11 = (-1)1+1M11 = (-1)1+1a22a33 x a23a32

kofaktor dan minor hanya berbeda tanda Cij=±Mij untuk membedakan apakah kofaktor pada ij adalah + atau - maka kita bisa melihat matrik dibawah ini

Page 6: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

Begitu juga dengan minor dari a32

M32 = = detM = a11a23 x a13a21

Maka kofaktor dari a32 adalah

c32 = (-1)3+2M32 = (-1)3+2 x a11a23 x a13a21

Secara keseluruhan, definisi determinan ordo 3x3 adalah

det(A) = a11C11+a12C12+a13C13

Determinan dengan Ekspansi Kofaktor Pada Baris Pertama

Misalkan ada sebuah matriks A3x3

A =

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11 - a12 + a13 = a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 - a22a31)= a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a12a21a33 - a11a23a32

Contoh Soal:

A = tentukan determinan A dengan metode ekspansi kofaktor baris pertama

Jawab:

Page 7: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

det(A) = = 1 - 2 + 3 = 1(-3) - 2(-8) + 3(-7) = -8

Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama

Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan keduanya yaitu faktor pengali. Pada ekspansi baris, kita mengalikan minor dengan komponen baris pertama. Sedangkan dengan ekspansi pada kolom pertama, kita mengalikan minor dengan kompone kolom pertama.

Misalkan ada sebuah matriks A3x3

A =

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11 - a21 + a31 = a11(a22a33 - a23a32) - a21(a21a33 - a23a31) + a31(a21a32 - a22a31)= a11a22a33 + a21a23a31 + a31a21a32 - a22(a31)2 - (a21)2a33 - a11a23a32

Contoh Soal:

A = tentukan determinan A dengan metode ekspansi kofaktor kolom pertama

Jawab:

det(A) = = 1 - 4 + 3 = 1(-3) - 4(-8) + 3(-7) = 8

Adjoin Matriks 3 x 3

Bila ada sebuah matriks A3x3

A =

Page 8: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

Kofaktor dari matriks A adalah

C11 = -12 C12 = 6 C13 = -16C21 = 4 C22 = 2 C23 = 16C31 = 12 C32 = -10 C33 = 16

maka matriks yang terbentuk dari kofaktor tersebut adalah

untuk mencari adjoint sebuah matriks, kita cukup mengganti kolom menjadi baris dan baris menjadi kolom

adj(A) =

Determinan Matriks Segitiga Atas

Jika A adalah matriks segitiga nxn (segitiga atas, segitiga bawah atau segitiga diagonal) maka det(A) adalah hasil kali diagonal matriks tersebut

Contoh

= (2)(-3)(6)(9)(4) = -1296

Metode Cramer

jika Ax = b adalah sebuah sistem linear n yang tidak di ketahui dan det(A)≠ 0 maka persamaan tersebut mempunyai penyelesaian yang unik

dimana A j adalah matrik yang didapat dengan mengganti kolom j dengan matrik b

Contoh soal:

Gunakan metode cramer untuk menyelesaikan persoalan di bawah ini

Page 9: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

x1 + 2x3 = 6-3x1 + 4x2 + 6x3 = 30-x1 - 2x2 + 3x3 = 8

Jawab:

bentuk matrik A dan b

A = b =

kemudian ganti kolom j dengan matrik b

A1 = A2 = A3 =

dengan metode sarrus kita dapat dengan mudah mencari determinan dari matrik-matrik di atas

maka,

Tes Determinan untuk Invertibilitas

Pembuktian: Jika R di reduksi secara baris dari Ä. Sebagai langkah awal, kita akan menunjukkan bahwa det(A) dan det(R) keduanya adalah nol atau tidak nol: E1,E2,...,Er menjadi matrix element yang berhubungan dengan operasi baris yang menghasilkan Rdari A. Maka,

R=Er...E2 E1 A

dan,

det(R)=det(Er)...det(E2)det(E1)det(EA)

Jika A dapat di-invers, maka sesuai dengan teorema equivalent statements , maka R = I, jadi det(R) = 1 ≠ 0 dan det(A) ≠ 0. Sebaliknya, jika det(A) ≠ 0, maka det(R) ≠ 0, jadi R tidak memiliki baris yang nol. Sesuai dengan teorema R = I, maka A adalah dapat di-invers. Tapi jika matrix bujur sangkar dengan 2 baris/kolom yang proposional adalah tidak dapat diinvers.

Contoh Soal :

Page 10: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

A=

karena det(A) = 0. Maka A adalah dapat diinvers.

Mencari determinan dengan cara Sarrus

A = tentukan determinan A

untuk mencari determinan matrik A maka,

detA = (aei + bfg + cdh) - (bdi + afh + ceg)

Metode Sarrus hanya untuk matrix berdimensi 3x3

Menghitung Inverse dari Matrix 3 x 3

A =

kemudian hitung kofaktor dari matrix AC11 = 12 C12 = 6 C13 = -16

C21 = 4 C22 = 2 C23 = 16

C31 = 12 C32 = -10 C33 = 16

menjadi matrix kofaktor

cari adjoint dari matrix kofaktor tadi dengan mentranspose matrix kofaktor diatas, sehingga menjadi

adj(A) =

Page 11: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

dengan metode Sarrus, kita dapat menghitung determinan dari matrix A

det(A) = 64

Sistem Linear Dalam Bentuk Ax = λx

dalam sistem aljabar linear sering ditemukan

Ax = λx ; dimana λ adalah skalar

sistem linear tersebut dapat juga ditulis dengan λx-Ax=0, atau dengan memasukkan matrix identitas menjadi

(λI - A) x = 0

contoh:

diketahui persamaan linear

x1 + 3x2 = λx1

4x1 + 2x2 = λx2

dapat ditulis dalam bentuk

= λ

yang kemudian dapat diubah

A = dan x =

yang kemudian dapat ditulis ulang menjadi

λ

λ

sehingga didapat bentuk

Page 12: 20110627_MODULII_MATERIKULIAHALJABARLINEAR

λ I - A =

namun untuk menemukan besar dari λ perlu dilakukan operasi

det (λ I - A) = 0 ;λ adalah eigen value dari A

dan dari contoh diperoleh

det (λ I - A) = = 0

atau λ^2 - 3λ - 10 = 0

dan dari hasil faktorisasi di dapat λ1 = -2 dan λ2 = 5

dengan memasukkan nilai λ pada persamaan (λ I - A) x = 0, maka eigen vector bisa didapat bila λ = -2 maka diperoleh

dengan mengasumsikan x2 = t maka didapat x1 = t

x =