777_ch02

Upload: yuxdar-contell

Post on 03-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 777_Ch02

    1/15

    Chapter 2

    Question 1

    In[1]:= Clear@x, yD (i) (a)

    dydx

    = ky and (b) y =c kx. Differentiating (b)

    In[2]:= D@c Ek x , xDOut[2]= ck x k

    Substitutingyinto dy/dx, then

    dydx

    =k c

    k

    xtherefore k c

    k

    x=

    k c

    k

    x. Hence true.

    (ii) (a)dydx

    = - xy

    , (b) y=x2 +y2 =c. Fromythen

    In[3]:= Dt@x ^ 2 + y^2, xDOut[3]= 2 x + 2 y Dt@y, xD

    which is equal to zero, since cis a constant. Solving we have

    In[4]:= Solve@2 x + 2 y Dt@y, xD == 0, Dt@y, xDDOut[4]=

    99Dt

    @y, x

    D

    x

    y==Therefore - x

    y = -

    xy

    . Hence, true.

    (iii) (a)dydx

    = -2yx

    , (b) y= ax2

    . From (b) differentiate with respect tox, then

    In[5]:= D@a x^2, xDOut[5]=

    2 ax3

    Buty=2 ax2

    so thatdydx

    = -2yx

    . Therefore -2yx

    = -2yx

    . Hence true.

    Question 2

    Solving and checking limiting values

    This first series of equations solve forp(t). It is then checked for the limit t->0. The upper limit cannot be

    checked because no assumptions can be made about the values of aand k.

    In[6]:= Clear@p, slope, t, Gompequ, Gompequ2, a, k, p0DIn[7]:= eq1 :=p '@tD ==k p@tD Ha Log@p@tDDL

    Chapter 02.nb 1

  • 8/12/2019 777_Ch02

    2/15

    In[8]:= DSolve@eq1, p@tD, tDOut[8]= 99p@tD k t Hak t +k C@1DL==

    In[9]:= DSolve@ 8eq1, p@0D ==p0 DOut[12]= LimitAa+k t+Log@a+Log@p0DD , t E

    Properties of growth equation

    The stationary values are obtained. The programme gives the upper stationary value and warns about the

    existence of the lower one.

    In[13]:= Solve@k pHa Log@pDL ==0, pDSolve::verif : Potential solution 8p 0< Hpossibly

    discarded by verifierL should be checked by hand. May require use of limits.

    Out[13]=

    88p a

  • 8/12/2019 777_Ch02

    3/15

    In[21]:= Gompequ2

    Out[21]= 5+ 0.8 t+Log@5Log@20DD

    In[22]:= Plot@Gompequ2,8t, 0, 10 DOut[23]= 5

    In[24]:= N@%DOut[24]= 148.413

    In[25]:= N@E ^ 4DOut[25]= 54.5982

    In[26]:= Plot@Gompequ,8p, 0.1, 150

  • 8/12/2019 777_Ch02

    4/15

    In[27]:= 11 y2

    y

    Out[27]= 12

    Log@1 + yD + 12

    Log@1 + yD

    In[28]:= xx

    Out[28]=x2

    2

    Hence, 12

    Log@1 + yD + 12

    Log@1 + yD= x22

    +cwhere cis the constant of integration. Solving for y we

    obtain

    In[29]:= SolveA 12

    Log@1 + yD + 12

    Log@1 + yD == x22

    + c, yESolve::verif : Potential solution 8y < Hpossibly

    discarded by verifierL should be checked by hand. May require use of limits.

    Solve::ifun : Inverse functions are being used by Solve, so some solutions may not be found.

    Out[29]= 99y 1 + 2 c+x2

    1 + 2 c+x2

    ==

    (ii)dydx

    =y2 - 2y + 1. But y2 - 2y + 1=H1 -yL2. Hence dyH1-yL2 = dx. Integrating both sides

    In[30]:= 1H1 yL2 y

    Out[30]= 1

    1 + y

    In[31]:= 1x

    Out[31]= x

    Solving for y

    In[32]:= SolveA 11 + y

    + c ==x, yE

    Out[32]= 99y 1 + c xc x

    ==

    (iii)

    dy

    dx =

    y2

    x2 hence

    dy

    y2 =

    dx

    x2 . Integrating both sides

    In[33]:= 1y2

    y

    Out[33]= 1y

    In[34]:= 1x2

    x

    Out[34]= 1x

    Introducing the constant of integration and solving, we have

    Chapter 02.nb 4

  • 8/12/2019 777_Ch02

    5/15

    In[35]:= SolveA 1y

    == 1x+ c, yE

    Out[35]= 99y x1 + c x

    ==

    Question 4

    (i)dydx

    =x2 - 2x + 1 and y=1 when x=0. Hence dy=Hx2 - 2x + 1L dx. Integrating both sides

    In[36]:= 1y

    Out[36]= y

    In[37]:= Hx2 2x + 1Lx

    Out[37]= x x2 + x3

    3

    Adding the constant of integration and solving forywe obtain

    In[38]:= SolveAy ==x x2 + x33

    + c, yE

    Out[38]= 99y c + x x2 + x3

    3==

    Including initial values we can solve for c

    In[39]:= SolveAy == 13 H3 c + 3 x 3 x2 + x3L, cE .8y >1, x >001.2Out[86]= H0.930233 + 0.216299 0.3225tL1.33333

    But k=s aka- (n+d)k hence

    In[87]:= kdot =0.1 4k^0.25 H0.03 + 0.4LkOut[87]= 0.4 k0.25 0.43 k

    In[88]:= sol =NSolve@kdot ==0, kDOut[88]= 88k 0. All, AxesOrigin >80, 0.58"t", "k"

  • 8/12/2019 777_Ch02

    12/15

    In[92]:= Plot@kdot,8k, 0, 1keOut[94]= 0.3225

    Letf(k) =s aka- (n+d)k then the linear approximation is given by:

    k=f(k) +f'(k)(k-ke) =f'(k)(k-ke)

    In[95]:= fprime =D@kdot, kD . k >keOut[95]= 0.3225

    Since |fprime| < 1 then keis a stable equilibrium.

    Question 15

    (i)

    YHtL

    agains Yis simply a linear line through the origin with slope sv

    > 0. The phase line is horizontal with

    fixed point at the origin, and arrows indicating an ever increasing value of Yfor some YH0L> 0.

    (ii)

    Given the differential equation Y '(t) - (s/v)Y(t) = 0, we can solve as follows:

    In[96]:= Clear@s, YDIn[97]:= DSolve@ 8Y '@tD Hs vLY@tD ==0, Y@0D ==Y0

  • 8/12/2019 777_Ch02

    13/15

    Question 16

    Given Y[t] = Y0er t. SolvingD '[t] = kY(t) = kY0e

    r t. SinceDis protected, we usexin its place.

    In[98]:= Clear@x, r, YDIn[99]:= sol =DSolve@ 8x '@tD ==k Y0 E^Hr tL, x@0D ==x0

  • 8/12/2019 777_Ch02

    14/15

    Question 18

    (a)

    In[105]:= Clear@fDIn[106]:= f@g_D:=100 Log@2D gIn[107]:= Map@f,82.7, 5.0, 2.5, 2.0, 1.4, 2.4, 2.0, 0.2, 0.2

  • 8/12/2019 777_Ch02

    15/15

    In[111]:= 11620000000.0173H20001992L

    Out[111]= 1.33448 109

    Question 20

    In[112]:= 50000.05 40 + H2000 0.05L HH0.0540L 1LOut[112]= 292508.

    Chapter 02.nb 15