chapter 10: failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 ·...

30
Chapter 10 - 1 학습 목표 크랙(Cracks)파손(failure)과의 관계? 파괴저항의 정량적 평가법은? 종류가 다른 재료들간 파괴 저항의 다른점은? 파괴에 대한 응력은 어떻게 평가할까? 재료의 파손에 대한 영향? Ship-cyclic loading from waves. Computer chip-cyclic thermal loading. Hip implant-cyclic loading from walking. Adapted from Fig. 22.30(b), Callister 7e. (Courtesy of National Semiconductor Corporation.) Adapted from Fig. 22.26(b), Callister 7e. Chapter 10: 파손 (Failure) Chapter-opening photograph, Chapter 10, Callister & Rethwisch 9e. Neal Boenzi/New York Times Pictures/Redux Pictures

Upload: truongminh

Post on 20-Aug-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 1

학습 목표 • 크랙(Cracks)과 파손(failure)과의 관계? • 파괴저항의 정량적 평가법은? 종류가 다른 재료들간 파괴 저항의 다른점은? • 파괴에 대한 응력은 어떻게 평가할까? • 재료의 파손에 대한 영향?

Ship-cyclic loading from waves.

Computer chip-cyclic thermal loading.

Hip implant-cyclic loading from walking.

Adapted from Fig. 22.30(b), Callister 7e. (Courtesy of National Semiconductor Corporation.)

Adapted from Fig. 22.26(b), Callister 7e.

Chapter 10: 파손 (Failure)

Chapter-opening photograph, Chapter 10, Callister & Rethwisch 9e.

Neal Boenzi/New York Times Pictures/Redux Pictures

Page 2: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 2

파괴 메커니즘 (Fracture mechanisms)

• 연성 파괴(Ductile fracture) –상당한 소성변형을 동반한다.

• 취성 파괴 (Brittle fracture)

–약간 또는 거의 소성 변형이 없음 –물리적 성질에 치명적임

Page 3: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 3

연성(Ductile) vs 취성 (Brittle) 파괴 Very

Ductile Moderately

Ductile Brittle 재료에 따른 파괴 거동

Large Moderate %AR or %EL Small • 연성 파괴는 일반적으로 취성 파괴보다 더 바람직하다!

Adapted from Fig. 10.1, Callister & Rethwisch 9e.

• 종류(Classification):

연성(Ductile): 파괴되기 전에 알

수 있다.

취성 (Brittle): 알 수 없다.

Page 4: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 4

• Ductile failure: -- one piece -- large deformation

Figures from V.J. Colangelo and F.A. Heiser, Analysis of Metallurgical Failures (2nd ed.), Fig. 4.1(a) and (b), p. 66 John Wiley and Sons, Inc., 1987. Used with permission.

Example: Pipe Failures

• Brittle failure: -- many pieces -- small deformations

Page 5: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 5

• 파괴 표면 관찰 (steel)

50 mm

산화물 입자가 보이드(void) 생성 의 원인

50 mm

From V.J. Colangelo and F.A. Heiser, Analysis of Metallurgical Failures (2nd ed.), Fig. 11.28, p. 294, John Wiley and Sons, Inc., 1987. (Orig. source: P. Thornton, J. Mater. Sci., Vol. 6, 1971, pp. 347-56.)

100 mm Fracture surface of tire cord wire loaded in tension. Courtesy of F. Roehrig, CC Technologies, Dublin, OH. Used with permission.

중간 연성 파괴 • Failure Stages:

necking σ

void nucleation

void growth and coalescence

shearing at surface fracture

Page 6: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 6

중간 연성파괴 (Moderately Ductile) vs. 취성 파괴 (Brittle Failure)

Fig. 10.3, Callister & Rethwisch 9e.

cup-and-cone fracture brittle fracture

Page 7: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 7

취성 파괴 (Brittle Failure) 화살표는 균열 생성 위치

Fig. 10.5(a), Callister & Rethwisch 9e. [From R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd edition. Copyright © 1989 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc. Photograph courtesy of Roger Slutter, Lehigh University.]

Page 8: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 8

응력은 결함에 집중한다! • 그리피스 균열 (Griffith Crack)

where ρt = 곡률의 반경

σo = 작용된 응력 σm = 균열 선단에서의 응력 Kt = 응력집중계수

ρt

Fig. 10.8(a), Callister & Rethwisch 9e.

Page 9: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 9

Concentration of Stress at Crack Tip

Adapted from Fig. 10.8(b), Callister & Rethwisch 9e.

Page 10: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 10

Engineering Fracture Design

r/h

필렛 반경(fillet radius)의 날카로움

increasing w/h

0 0.5 1.0 1.0

1.5

2.0

2.5

응력 집중 계수, K t =

• 날카로운 코너를 피해야 하는 이유! σ0

Adapted from Fig. 8.2W(c), Callister 6e. (Fig. 8.2W(c) is from G.H. Neugebauer, Prod. Eng. (NY), Vol. 14, pp. 82-87 1943.)

r, fillet

radius

w

h

σ max

σmax σ0

Page 11: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 11

균열 전파 (Crack Propagation) 날카로운 끝을 가진 균열이 뭉툭한 선단을 갖는 균열보다 쉽게 전파된다.

소성재료는 균열의 선단에서 변형되고, 일반적으로 균열의 끝은 뭉툭하다.

deformed region

brittle

균열에 에너지 균형 • 탄성 변형 에너지-

• 재료가 탄성 변형할 때 에너지는 그 재료에 저장된다. • 균열이 전파 할 때 이 에너지가 방출된다 • 새로운 표면의 생성은 에너지가 필요하다.

ductile

Page 12: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 12

균열 전파에 대한 기준 Criterion for Crack Propagation

균열 선단 응력(σm)이 임계 응력 (σc)을 넘으면 균열이 전파된다.

where

– E = 탄성 계수 (modulus of elasticity) – γs = 특정 표면 에너지 (specific surface energy) – a = 내부균열의 절반 길이

연성 재료 (ductile materials)의 경우 => γs 대신에 γs + γp 를 사용 γp : 탄성 변형 에너지

i.e., σm > σc

Page 13: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 13

Example: 최대 결함 길이 큰 유리판 40MPa의 인장 응력 비표면 에너지: 0.3 J/m2, 탄성 계수: 69GPa, 최대 내부 결함의 길이는?

( )( )( )

mmmN

mNmNEac

s

µππσ

γ

2.8102.8 /1069

/3.0/106922

6

226

29

2

=×=

××

××==

Page 14: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 14

• 균열 성장 조건:

• 균열 길이가 클수록, 응력집중이 가장 큰 균열이 성장!

균열 성장에 대한 설계

K ≥ Kc =

--Scenario 1: 최대 결함 크기는 요구 응력을 설계.

σ

amax no fracture

fracture

--Scenario 2: 요구 응력은 최대 결함 크기를 설계.

amax

σ no fracture

fracture

a : 균열길이 Kc: 파괴 인성 Y: 기하학적인 매개변수

Page 15: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 15

Fracture Toughness Ranges

Based on data in Table B.5, Callister & Rethwisch 9e. Composite reinforcement geometry is: f = fibers; sf = short fibers; w = whiskers; p = particles. Addition data as noted (vol. fraction of reinforcement): 1. (55vol%) ASM Handbook, Vol. 21, ASM Int., Materials Park, OH (2001) p. 606. 2. (55 vol%) Courtesy J. Cornie, MMC, Inc., Waltham, MA. 3. (30 vol%) P.F. Becher et al., Fracture Mechanics of Ceramics, Vol. 7, Plenum Press (1986). pp. 61-73. 4. Courtesy CoorsTek, Golden, CO. 5. (30 vol%) S.T. Buljan et al., "Development of Ceramic Matrix Composites for Application in Technology for Advanced Engines Program", ORNL/Sub/85-22011/2, ORNL, 1992. 6. (20vol%) F.D. Gace et al., Ceram. Eng. Sci. Proc., Vol. 7 (1986) pp. 978-82.

Graphite/ Ceramics/ Semicond

Metals/ Alloys

Composites/ fibers Polymers

5

K Ic

(MPa

· m

0.5 )

1

Mg alloys Al alloys

Ti alloys

Steels

Si crystal Glass - soda Concrete

Si carbide

PC

Glass 6

0.5

0.7

2

4 3

10

2 0

3 0

<100> <111>

Diamond

PVC PP

Polyester

PS

PET

C-C (|| fibers) 1

0.6

6 7

4 0 5 0 6 0 7 0

100

Al oxide Si nitride

C/C ( fibers) 1

Al/Al oxide(sf) 2

Al oxid/SiC(w) 3

Al oxid/ZrO 2 (p) 4 Si nitr/SiC(w) 5

Glass/SiC(w) 6

Y 2 O 3 /ZrO 2 (p) 4

Page 16: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 16

Design Example: Aircraft Wing

Answer:

• 2가지 설계 방법... Design A --가장 큰 균열이 9 mm --파괴 응력 = 112 MPa

Design B --동일 재료 사용 --가장 큰 균열이 4 mm --파괴 응력= ?

• Key point: Y 와 KIc 는 동일.

• 재료의 평면 변형률 파괴인성 KIc = 26 MPa-m0.5

• Use...

9 mm 112 MPa 4 mm --Result:

constant

Page 17: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 17

충격 시험 (Impact Testing)

final height initial height

• 충격 하중: -- 엄격한 충격 시험 -- 재료를 취성에 예민하게 만듬 -- 인성을 감소시킴

Fig. 10.12(b), Callister & Rethwisch 9e. (Adapted from H.W. Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, John Wiley and Sons, Inc. (1965) p. 13.)

(Charpy)

Page 18: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 18

충격 에너지에 대한 온도 영향

Adapted from Fig. 10.15, Callister & Rethwisch 9e.

• 연성-취성 전이 온도 Ductile-to-Brittle Transition Temperature (DBTT)...

BCC metals (e.g., iron at T < 914°C)

Impa

ct E

nerg

y

Temperature

High strength materials ( σ y > E/150)

polymers

More Ductile Brittle

Ductile-to-brittle transition temperature

FCC metals (e.g., Cu, Ni) or HCP

Page 19: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 19

• Pre-WWII: The Titanic • WWII: Liberty ships

• Problem: 강철을 DBTT이하 온도에서 사용했다.

Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(a), p. 262, John Wiley and Sons, Inc., 1996. (Orig. source: Dr. Robert D. Ballard, The Discovery of the Titanic.)

Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(b), p. 262, John Wiley and Sons, Inc., 1996. (Orig. source: Earl R. Parker, "Behavior of Engineering Structures", Nat. Acad. Sci., Nat. Res. Council, John Wiley and Sons, Inc., NY, 1957.)

Design Strategy: Stay Above The DBTT!

Page 20: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 20

피로 (Fatigue)

Adapted from Fig. 10.18(a), Callister & Rethwisch 9e.

• 피로 (Fatigue) = 지속되는 사이클 응력에 대한 파손

• 응력은 시간에 따라 변한다. -- key parameters: S (σa 응력진폭), σm (평균응력), P 320 식10.14 응력 주파수

σ max

σ min

σ

time

σ m S

• Key points: 피로는 -- 부분적인 파손을 일으킴.( σmax < σy). -- ~ 90% 이상의 기계적 파손을 일으키는 원인

Page 21: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 21

Adapted from Fig. 10.19(a), Callister & Rethwisch 9e.

피로 거동의 종류 • 피로한계 (Fatigue limit, Sfat) : -- S < Sfat 일 때 피로가 안 일어남.

Sfat

case for steel (typ.)

N = Cycles to failure 10 3 10 5 10 7 10 9

unsafe

safe

S =

stre

ss a

mpl

itude

• 일부 물질(Al, Cu, Mg)의 경우, 피로 한계가 없다!

Adapted from Fig. 10.19(b), Callister & Rethwisch 9e.

case for Al (typ.)

N = Cycles to failure 10 3 10 5 10 7 10 9

unsafe

safe

S =

stre

ss a

mpl

itude

Page 22: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 22

• 균열은 점진적으로 증가 typ. 1 to 6

하중 사이클 당 균열 길이 증가

• 파단된 샤프트 용의 강 -- Kmax < Kc 일지라도 균열은 커진다. -- 균열 성장의 원인 • Δσ 증가 • 균열이 길어짐 • 하중 주기가 증가

crack origin

Fig. 10.22, Callister & Rethwisch 9e. (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

피로 균열의 성장 속도

Page 23: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 23

피로수명의 증가

2. 설계상의 응력 집중을 제거. Fig. 10.26, Callister &

Rethwisch 9e.

bad

bad

better

better

Adapted from Fig. 10.25, Callister & Rethwisch 9e.

1. 표면에 압축응력을 부가 (표면 균열을 억제하기 위해)

N = 파손 사이클

moderate tensile σm Larger tensile σm

S =

stre

ss a

mpl

itude

near zero or compressive σm

--Method 1: 숏피닝(shot peening)

put surface

into compression

shot --Method 2: 표면 경화 침탄법 (carburizing)

C-rich gas

P 331, Fig. 10.25

Page 24: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 24

크리프 (Creep) 일정한 응력에 따른 샘플 변형 (σ) vs. time

Adapted from Fig. 10.29, Callister & Rethwisch 9e.

Primary Creep: 기울기 (creep rate)가 시간과 함께 감소.

Secondary Creep: 정상 상태 i.e., constant slope (Δε /Δt).

Tertiary Creep: 기울기 (creep rate)가 시간과 함께 증가. i.e. acceleration of rate.

σ σ,e

0 t

Page 25: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 25

• 높은 온도에서 발생, T > 0.4 Tm (in K)

Figs. 10.30, Callister & Rethwisch 9e.

크리프 (Creep): 온도 의존성

elastic

primary secondary

tertiary

Page 26: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 26

2차 크리프 (Secondary Creep) • 어느 온도 및 응력 (Τ, σ) 에서 변형률은 일정하다, σ -- 회복과 변형 경화가 균형을 이룸

stress exponent (material parameter)

strain rate activation energy for creep (material parameter)

applied stress material const.

• 변형률은 온도 및 응력 (T, σ)과 함께 증가

10 2 0 4 0

10 0 2 0 0

10 -2 10 -1 1 Steady state creep rate (%/1000hr) e s

Stre

ss (M

Pa) 427°C

538 °C

649 °C

Adapted from Fig. 9.38, Callister & Rethwisch 4e. [Reprinted with permission from Metals Handbook: Properties and Selection: Stainless Steels, Tool Materials, and Special Purpose Metals, Vol. 3, 9th ed., D. Benjamin (Senior Ed.), ASM International, 1980, p. 131.]

Page 27: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 -

크리프 파손 (Creep Failure)

• 파손은 결정립계를 따라 일어남

applied stress

g.b. cavities

From V.J. Colangelo and F.A. Heiser, Analysis of Metallurgical Failures (2nd ed.), Fig. 4.32, p. 87, John Wiley and Sons, Inc., 1987. (Orig. source: Pergamon Press, Inc.)

27

Page 28: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 -

예제 10.4: 2차 크리프 속도 계산 • 파단 수명을 예측 S-590 Iron, T = 800°C, σ = 140 MPa

28

ns K σε 1=

σε lnlnln 1 nKs +=•

미지수 2개 는 식2개

63.4)6.13exp(1

=−=

nK

Page 29: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 -

크리프 파단 수명의 예측 • 파단 수명을 예측 S-590 Iron, T = 800°C, σ = 140 MPa

time to failure (rupture)

function of applied stress

temperature

Time to rupture, tr

310x24)log20)(K 1073( =+ rt

Ans: tr = 233 hr Adapted from Fig. 10.33, Callister & Rethwisch 9e. (From F.R. Larson and J. Miller, Trans. ASME, 74, 765 (1952). Reprinted by permission of ASME)

103 T(20 + log tr (K-h)

Stre

ss (M

Pa)

1000

100

12 20 24 28 16

data for S-590 Iron

24

29

Page 30: Chapter 10: Failurecontents.kocw.net/.../document/2016/chosun/kimsunjoong/9.pdf · 2016-09-09 · (From D. J. Wulpi, Understanding How Components Fail, 1985. Reproduced by permission

Chapter 10 - 30

• 날카로운 모서리는 큰 응력집중 및 조기 파손의 원인이 된다.

SUMMARY • 세가지 파손 원인: 부적절한 재료 선정 및 부품설계, 부품 사용 • 결함은 이론 값보다 낮은 응력에서 파손의 원인이 되는 응력 집중을 일으킨다.

• T 및 σ 에 의존하는 파손의 종류: - 단순 파손의 경우(noncyclic σ and T < 0.4Tm), 파괴응력을 감소시키는 원인: - 내부 균열의 최대 크기가 증가할수록 - 온도가 감소, - 하중속도가 증가 할수록. - 피로의 경우 (cyclic σ): - Δσ 증가함에 따라 피로 사이클은 감소. - 크리프 (creep)의 경우 (T > 0.4Tm): - σ 또는 T 증가할 수록 파열 수명은 줄어든다.