fullwaverectifier.pdf

Upload: juliano-ricardo

Post on 06-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 fullwaverectifier.pdf

    1/21

     EE 435- Electric Drives Dr. Ali M. Eltamaly

    Chapter 2

    Diode ircuits or Uncon trolled Rectifier

    2.1 Introduction

    Because of their ability to conduct current in one direction, diodes are used in rectifiercircuits. The definition of rectification process is “ the process of converting the alternating

    voltages and currents to direct currents and the device is known as rectifier ” It is extensively

    used in charging batteries; supply DC motors, electrochemical processes and power supply

    sections of industrial components.

    The most famous diode rectifiers have been analyzed in the following sections. Circuits and

    waveforms drawn with the help of PSIM simulation program.

    There are two different types of uncontrolled rectifiers or diode rectifiers, half wave and full

    wave rectifiers. Full-wave rectifiers has better performance than half wave rectifiers. But the

    main advantage of half wave rectifier is its need to less number of diodes than full wave

    rectifiers. The main disadvantages of half wave rectifier are:1-  High ripple factor,

    2-  Low rectification efficiency,

    3-  Low transformer utilization factor, and,

    4-  DC saturation of transformer secondary winding.

    2.2 Performance ParametersIn most rectifier applications, the power input is sine-wave voltage provided by the electric

    utility that is converted to a DC voltage and AC components. The AC components are

    undesirable and must be kept away from the load. Filter circuits or any other harmonic reduction

    technique should be installed between the electric utility and the rectifier and between the

    rectifier output and the load that filters out the undesired component and allows useful

    components to go through. So, careful analysis has to be done before building the rectifier. The

    analysis requires define the following terms:

    The average value of the output voltage, dcV , 

    The average value of the output current, dc I  ,

    The rms value of the output voltage, rmsV , 

    The rms value of the output current, rms I   

    The output DC power, dcdcdc   I V  P  *=   (2.1) 

    The output AC power, rmsrmsac   I V  P  *=   (2.2) The effeciency or rectification ratio is defiend as acdc   P  P  /=η    (2.3)

    The output voltage can be considered as being composed of two components (1) the DC

    component and (2) the AC component or ripple. The effective (rms) value of the AC component

    of output voltage is defined as:-

    22dcrmsac   V V V    −=   (2.4) 

    The form factor, which is the measure of the shape of output voltage, is defiend as shown in

    equation (2.5). Form factor should be greater than or equal to one. The shape of output voltage

    waveform is neare to be DC as the form factor tends to unity.

    dcrms   V V  FF  /=   (2.5)The ripple factor which is a measure of the ripple content, is defiend as shown in (2.6). Ripple

    factor should be greater than or equal to zero. The shape of output voltage waveform is neare to

     be DC as the ripple factor tends to zero.

  • 8/17/2019 fullwaverectifier.pdf

    2/21

    Diode Circuits or Uncontrolled Rectifier   9 

    11 22

    222

    −=−=−

    ==   FF V 

    V V 

    V  RF 

    dc

    rms

    dc

    dcrms

    dc

    ac   (2.6)

    Where S V  and S  I   are the rms voltage and rms current of the transformer secondery respectively.

    Total Harmonic Distortion (THD) measures the shape of supply current or voltage. THDshould be grearter than or equal to zero. The shape of supply current or voltage waveform is near

    to be sinewave as THD tends to be zero. THD of input current and voltage are defiend as shown

    in (2.8.a) and (2.8.b) respectively.

    121

    2

    21

    21

    2

    −=−

    =S 

    S S i

     I 

     I 

     I 

     I  I THD   , and 12

    1

    2

    21

    21

    2

    −=−

    =S 

    S S v

    V V THD   (2.8)

    where 1S  I   and 1S V are the fundamental component  of the input current and voltage, S  I   and S V   

    respectively.

    In general, power factor in non-sinusoidal circuits can be obtained as following:

    φ cossVoltampereApparent

    Power R ===

    S S  I V 

     P eal  PF    (2.10)

    Where, φ  is the angle between the current and voltage. Definition is true irrespective for any

    sinusoidal waveform. But, in case of sinusoidal voltage (at supply) but non-sinusoidal current, the

     power factor can be calculated as the following:

    Average power is obtained by combining in-phase voltage and current components of the same

    frequency.

     Faactor nt  Displaceme Factor  Distortion I 

     I 

     I V 

     I V 

     I V 

     P  PF 

    S S 

    S S 

    S S 

    *coscos

    1111 ====   φ 

    φ   (2.11)

    Where 1φ   is the angle between the fundamental component of current and supply voltage.

    Distortion Factor = 1 for sinusoidal operation and displacement factor is a measure of

    displacement between ( )t v ω   and ( )t i ω  .

    Single-Phase Half Wave Diode Rectifier With Resistive Load

    Fig.2.1 shows a single-phase half-wave diode rectifier with pure resistive load. Assuming

    sinusoidal voltage source, V S   the diode beings to conduct when its anode voltage is greater than

    its cathode voltage as a result, the load current flows. So, the diode will be in “ON” state in

     positive voltage half cycle and in “OFF” state in negative voltage half cycle. Fig.2.2 shows

    various current and voltage waveforms of half wave diode rectifier with resistive load. Thesewaveforms show that both the load voltage and current have high ripples. For this reason, single-

     phase half-wave diode rectifier has little practical significance.

    Fig.2.1 Single-phase half-wave diode rectifier with resistive load.

  • 8/17/2019 fullwaverectifier.pdf

    3/21

      Chapter Two 10 

    Fig.2.2 Various waveforms for half wave diode rectifier with resistive load.

    The average or DC output voltage can be obtained by considering the waveforms shown in

    Fig.2.2 as following: ∫   ==π 

    π ω ω 

    π 0

    sin2

    1   mmdc

    V t d t V V    (2.12)

    Where, mV   is the maximum value of supply voltage.

    Because the load is resistor, the average or DC component of load current is: R

     R

    V  I    mdcdc

    π ==  

    The root mean square (rms) value of a load voltage is defined as:

    2sin

    2

    1

    0

    22   mmrms

    V t d t V V    == ∫

    π 

    ω ω π 

      (2.14)

    Similarly, the root mean square (rms) value of a load current is defined as: R

     R

    V  I    mrmsrms

    2==  

    It is clear that the rms value of the transformer secondary current, S  I   is the same as that of the

    load and diode currents

    Then R

    V  I  I    m DS 

    2==   (2.15)

    Where,  D I   is the rms value of diode current.

     Example 1:  The rectifier shown in Fig.2.1 has a pure resistive load of  R  Determine (a) The

    efficiency, (b) Form factor (c) Ripple factor (d) Peak inverse voltage (PIV) of diode D1.

     Solution: From Fig.2.2, the average output voltagedc

    V   is defiend as:

    π π 

    π ω ω 

    π 

    π mm

    mdc

    V V t d t V V    =−−== ∫ ))0cos(cos(2)sin(2

    1

    0

      Then, R

     R

    V  I    mdcdc

    π ==  

  • 8/17/2019 fullwaverectifier.pdf

    4/21

    Diode Circuits or Uncontrolled Rectifier   11 

    2)sin(

    2

    1

    0

    2   mmrms

    V t V V    == ∫

    π 

    ω π 

    , R

    V  I    mrms

    2=  and,

    2

    mS 

    V V   =  

    The rms value of the transformer secondery current is the same as that of the load:  RV  I  mS  2.=  

    Then, the efficiency or rectification ratio is:

    rmsrms

    dcdc

    ac

    dc

     I V 

     I V 

     P 

     P 

    *

    *==η  %53.40

    2*

    2

    *

    ==

     R

    V V 

     R

    V V 

    mm

    mm

    π π  

    (b) 57.12

    2 ====  π 

    π 

    m

    m

    dc

    rms

    V  FF   

    (c) 211.1157.1122 =−=−==   FF 

    V  RF 

    dc

    ac  

    (d) It is clear from Fig2.2 that the PIV is mV  .

    2.3.2 Half Wave Diode Rectifier With R-L Load

    In case of  RL load as shown in Fig.2.3, The voltage source, if ( )t V v m s   ω sin=   ,  sv  is positivewhen 0 < ω t < π , and  sv  is negative when π  < ω t

  • 8/17/2019 fullwaverectifier.pdf

    5/21

      Chapter Two 12 

    Fig.2.4 Various waveforms for Half wave diode rectifier with R-L load.

    Assume wL j R Z    +=∠φ    Then 2222  Lw R Z    += ,

    φ cos Z  R = , φ ω  sin Z  L =   and R

     Lω φ  =tan

    ( ) ( )

     

     

     

     +−=

    −φ 

    ω 

    φ φ ω ω tan

    sinsin)(

    m et  Z 

    V t i   (2.24)

    Starting from ω  t  = π, as t ω   increases, the current would keep decreasing. For some value oft ω  , say β , the current would be zero. If ω t  > β , the current would evaluate to a negative value.

    Since the diode blocks current in the reverse direction, the diode stops conducting when t ω   

    reaches β . The value of β can be obtained by substituting that β =

    =wt 

    t i 0)(  into (2.24) we get:

    ( ) ( ) 0sinsin)( tan =

     

     

     

     +−=

    −φ 

     β 

    φ φ  β  β    e Z 

    V i   m   (2.25)

    The value of  β   can be obtained from the above equation by using the methods of numerical

    analysis. This average value can be obtained as shown in (2.26). The rms output voltage in thiscase is shown in equation (2.27).

    )cos1(*2

    sin*2

    0

     β π 

    ω ω π 

     β 

    −== ∫   mmdcV 

    t d t V 

    V    (2.26)

    )2sin(1(5.0*2

    )sin(*2

    1

    0

    2 β  β 

    π ω 

    π 

     β 

    −+== ∫  Vm

    dwt t V V  mrms   (2.27)

    2.4 Single-Phase Full-Wave Diode Rectifier

    The full wave diode rectifier can be designed with a center-taped transformer as shown in Fig.2.8,where each half of the transformer with its associated diode acts as half wave rectifier or as a

     bridge diode rectifier as shown in Fig. 2.12. The advantage and disadvantage of center-tap diode

    rectifier is shown below:

     R

    wL

     Z 

    Φ 

  • 8/17/2019 fullwaverectifier.pdf

    6/21

    Diode Circuits or Uncontrolled Rectifier   13 

    dvantages

    •  The need for center-tapped transformer is eliminated,•  The output is twice that of the center tapped circuit for the same secondary voltage, and,•  The peak inverse voltage is one half of the center-tap circuit.

    Disadvantages

    •  It requires four diodes instead of two, in full wave circuit, and,•  There are always two diodes in series are conducting. Therefore, total voltage drop in the

    internal resistance of the diodes and losses are increased.

    The following sections explain and analyze these rectifiers.

    2.4.1 Center-Tap Diode Rectifier With Resistive Load

    In the center tap full wave rectifier, current flows through the

    load in the same direction for both half cycles of input AC

    voltage. The circuit shown in Fig.2.8 has two diodes D1 and D2

    and a center tapped transformer. The diode D1 is forward bias“ON” and diode D2 is reverse bias “OFF” in the positive half

    cycle of input voltage and current flows from point a to point b.

    Whereas in the negative half cycle the diode D1 is reverse bias

    “OFF” and diode D2 is forward bias “ON” and again current

    flows from point a  to point b. Hence DC output is obtained

    across the load.

    Fig.2.9 Various current and voltage waveforms for center-tap diode rectifier with resistive load.[

    In case of pure resistive load, Fig.2.9 shows various current and voltage waveform for

    converter in Fig.2.8. The average and rms output voltage and current can be obtained from the

    waveforms shown in Fig.2.9 as shown in the following:

    π ω ω 

    π 

    π 

    mmdc V t d t V V  2sin1

    0

    == ∫   and  RV  I   mdcπ 2=   (2.36)

    Fig.2.8 Center-tap diode rectifie

  • 8/17/2019 fullwaverectifier.pdf

    7/21

      Chapter Two 14 

    ( )2

    sin1

    0

    2   mmrms

    V t d t V V    == ∫

    π 

    ω ω π 

      and R

    V  I    mrms

    2=   (2.38)

    PIV of each diode = mV 2 (2.40)

    2

    mS 

    V V   =   (2.41)

    The rms value of the transformer secondery current is the same as that of the diode:

     R

    V  I  I    m DS 

    2==   (2.41)

    Example 3. The rectifier in Fig.2.8 has a purely resistive load of  R Determine (a) The efficiency,

    (b) Form factor (c) Ripple factor (d) Peak inverse voltage (PIV) of diode D1.

     Solution:- The efficiency or rectification ratio is

    %05.81

    2*

    2

    2*

    2

    *

    *====

     R

    V V 

     R

    V V 

     I V 

     I V 

     P 

     P 

    mm

    mm

    rmsrms

    dcdc

    ac

    dc   π π η   

    (b) 11.1222

    2 ====  π 

    π 

    m

    m

    dc

    rms

    V  FF   

    (c) 483.0111.11 22 =−=−==   FF V V  RF 

    dc

    ac  

    (d) The PIV is mV 2

    2.4.3 Single-Phase Full Bridge Diode Rectifier With Resistive Load

    Another alternative in single-phase

    full wave rectifier is by using four

    diodes as shown in Fig.2.12 which

    known as a single-phase full bridge

    diode rectifier. It is easy to see theoperation of these four diodes. The

    current flows through diodes D1 and

    D2 during the positive half cycle of

    input voltage (D3 and D4 are “OFF”). During

    the negative one, diodes D3 and D4 conduct (D1 and D2 are “OFF”).

    In positive half cycle the supply voltage forces diodes D1 and D2 to be "ON". In same time it

    forces diodes D3 and D4 to be "OFF". So, the current moves from positive point of the supply

    voltage across D1 to the point a of the load then from point b to the negative marked point of the

    supply voltage through diode D2. In the negative voltage half cycle, the supply voltage forces thediodes D1 and D2 to be "OFF". In same time it forces diodes D3 and D4 to be "ON". So, the

    current moves from negative marked point of the supply voltage across D3 to the point a of the

    load then from point b to the positive marked point of the supply voltage through diode D4. So, it

    Fig.2.12 Single-phase full bridge diode rectifier.

  • 8/17/2019 fullwaverectifier.pdf

    8/21

    Diode Circuits or Uncontrolled Rectifier   15 

    is clear that the load currents moves from point a  to point b  in both positive and negative half

    cycles of supply voltage. So, a DC output current can be obtained at the load in both positive and

    negative halves cycles of the supply voltage. The complete waveforms for this rectifier is shown

    in Fig.2.13.

    Fig.2.13 Various current and voltage waveforms of Full bridge single-phase diode rectifier.

    Example 4 The rectifier shown in Fig.2.12 has a purely resistive load of R=15 Ω and, V S =300 sin314 t  and unity transformer ratio. Determine (a) The efficiency, (b) Form factor, (c) Ripple factor,

    (d) The peak inverse voltage, (PIV) of each diode, , and, (e) Input power factor.

     Solution: 300=m

    V  V

    V V 

    t d t V V    mmdc 956.1902

    sin1

    0

    === ∫   π ω ω π π 

    ,  A R

    V  I    mdc 7324.12

    2==

    π  

    ( )   V V 

    t d t V V    mmrms 132.2122

    sin1

    2/1

    0

    2 ==

    = ∫

    π 

    ω ω π 

    ,   A R

    V  I    mrms 142.14

    2==  

    (a) %06.81===rmsrms

    dcdc

    ac

    dc

     I V 

     I V 

     P 

     P η   

    (b) 11.1==

    dc

    rms

     FF   

    (c) 482.011 22

    222

    =−=−=−

    ==   FF V 

    V V 

    V  RF 

    dc

    rms

    dc

    dcrms

    dc

    ac  

    (d) The PIV=300V

    (e) Input power factor = 1cosRe

    ==S S 

    S S 

     I V 

     I V 

     Power  Apperant 

     Power al    φ  

    2.4.4 Full Bridge Single-phase Diode Rectifier with DC Load Current

    The full bridge single-phase diode rectifier with DC load current is shown in Fig.2.14. In thiscircuit the load current is pure DC and it is assumed here that the source inductances is negligible.

    In this case, the circuit works as explained before in resistive load but the current waveform in the

    supply will be as shown in Fig.2.15. And the rms value of the input current is oS    I  I    =  

  • 8/17/2019 fullwaverectifier.pdf

    9/21

      Chapter Two 16 

    Fig.2.14 Full bridge single-phase diode rectifier with DC load current.

    Fig.2.15 Various current & voltage waveforms for single-phase diode bridge rectifier for pure DC load.

    The supply current in case of pure DC load current is shown in Fig.2.15, as we see it is odd

    function, then na coefficients of Fourier series equal zero, 0=na , and

    [ ]

    [ ] .............,5,3,14

    cos0cos2

    cos2

    sin*2

    0

    0

    ==−=

    −== ∫

    n for n

     I n

    n

     I 

    t nn

     I t d t n I b

    oo

    oon

    π π 

    π 

    ω π 

    ω ω π 

    π π 

      (2.51)

    Then from Fourier series concepts we can say:

    )..........9sin9

    17sin

    7

    15sin

    5

    13sin

    3

    1(sin*

    4)(   +++++=   t t t t t  I t i   o ω ω ω ω ω 

    π   (2.52)

    %4615

    1

    13

    1

    11

    1

    9

    1

    7

    1

    5

    1

    3

    1))((

    2222222

      

     +

     

      

     +

     

      

     +

     

      

     +

     

      

     +

     

      

     +

     

      

     =∴   t  I THD  s or we can obtain

    ))((   t  I THD  s  as the following:

    From (2.52) we can obtain the value of isπ 2

    41

    oS 

     I  I    =  

    %34.4814

    21

    2

    41))((

    2

    2

    2

    1

    =− 

      

     =−

     

     

     

     

    =− 

      

     =∴  π 

    π 

    o

    o

    S  s  I 

     I 

     I 

     I t  I THD  

  • 8/17/2019 fullwaverectifier.pdf

    10/21

    Diode Circuits or Uncontrolled Rectifier   17 

    Example 5 solve Example 4 if the load is 30 A pure DC

     Solution:  From example 4 V dc= 190.986 V, V rms=212.132 V  A I dc 30=  and rms I  = 30 A

    (a) %90===rmsrms

    dcdc

    ac

    dc

     I V 

     I V 

     P 

     P η    (b) 11.1==

    dc

    rms

    V  FF   

    (c) 482.011 22

    222

    =−=−=−

    ==   FF V 

    V V 

    V  RF 

    dc

    rms

    dc

    dcrms

    dc

    ac  

    (d) The PIV=V m=300V

    (e)  A I 

     I    oS  01.272

    30*4

    2

    41   ===

    π π  

    Input Power factor=   = Power  Apperant 

     Power al Re Lag 

     I 

     I 

     I V 

     I V 

    S S 

    S S  9.01*30

    01.27cos*cos* 11 ===  φ φ 

     

    2.4.5 Effect Of L S  On Current Commutation Of Single-Phase Diode Bridge Rectifier.

    Fig.2.15 Shows the single-phase diode bridge rectifier with source inductance. Due to the value

    of LS  the transitions of the AC side current S i  from a value of o I to  o I −  (or vice versa) will not

     be instantaneous. The finite time interval required for such a transition is called commutation

    time. And this process is called current commutation process. Various voltage and current

    waveforms of single-phase diode bridge rectifier with source inductance are shown in Fig.2.16.

    Fig.2.15 Single-phase diode bridge rectifier with source inductance.

    Fig.2.16 Various current & voltage waveforms for single-phase diode bridge rectifier with source inductance.

  • 8/17/2019 fullwaverectifier.pdf

    11/21

      Chapter Two 18 

    Let us study the commutation time starts at t =10 ms as indicated in Fig.2.16. At this time the

    supply voltage starts to be negative, so diodes D1 and D2 have to switch OFF and diodes D3 and

    D4 have to switch ON as explained in the previous case without source inductance. But due to the

    source inductance it will prevent that to happen instantaneously. So, it will take time t ∆   to

    completely turn OFF D1 and D2 and to make D3 and D4 carry the entire load current ( o I  ). Alsoin the time t ∆   the supply current will change from o I    to o I −  which is very clear in Fig.2.16.

    Fig.2.17 shows the equivalent circuit of the diode bridge at time t ∆ .

    Fig.2.17 The equivalent circuit of the diode bridge at commutation time t ∆ .

     

      

     −=   −

    m

    o s

     I  Lu

      ω 21cos

    1  (2.56)

    oS oS rd    I  L f  I  L

    V  42

    4

    −=−

    = π 

    ω   (2.61)

    The DC voltage with source inductance tacking into account can be calculated as following:

    o sm

    rd ceinduc sourcewithout dcactual dc  I  fL

    V V V V  4

    2tan

      −=−=π 

      (2.62)

    −=

    32

    2 2 u I  I    o s

    π 

    π   (2.64)

    2sin*

    2

    81

    u

    u

     I  I    oS 

    π 

    =   (2.68)

    ( )

    =

    32

    sin2

    uu

    u pf 

    π π 

      (2.69)

     Example 6   Single phase diode bridge rectifier connected to 11 kV, 50 Hz, source inductance

    mH  X  s 5=  supply to feed 200 A pure DC load, find: (i) Average DC output voltage, (ii) Power

    factor. And (iii) Determine the THD of the utility line current.

    Solution: (i) From (2.62), V V m

    155562*11000   ==  

    o sm

    rd ceinduc sourcewithout dcactual dc  I  fL

    V V V V  4

    2tan

      −=−=π 

     

  • 8/17/2019 fullwaverectifier.pdf

    12/21

    Diode Circuits or Uncontrolled Rectifier   19 

    V V actual dc

    9703200*005.0*50*415556*2

    =−=π 

     

    (ii) From (2.56) the commutation angle u can be obtained as following:

    .285.015556

    200*005.0*50**2*2

    1cos

    2

    1cos11

    rad V 

     I  L

    um

    o s

     

     

     

    −= 

     

     

     

    −=

      −−   π ω 

     

    The input power factor can be obtained from (2.69) as following

    ( ) ( )917.0

    3

    285.

    2285.0

    285.0sin*2

    32

    sin*2

    2cos*1 =

    =

      

     =

    π π 

    π π 

      uu

    uu

     I 

     I  pf 

    S   

     Au I 

     I    oS  85.1933

    285.0

    2

    200*2

    32

    2 22

    =

    −=

    −=

      π 

    π 

    π 

    π  

     Au

    u

     I  I    oS  46.1792

    285.0sin*285.0*2

    200*8

    2sin*2

    81   = 

      

     == π π   

    %84.40146.179

    85.1931

    22

    1

    =− 

      

     =−

     

      

     =

    S i

     I 

     I THD  

    2.5 Three Phase Diode Rectifiers

    2.5.1 Three-Phase Half Wave Rectifier

    Fig.2.21 shows a half wave three-phase diode

    rectifier circuit with delta star three-phase

    transformer. In this circuit, the diode with highest potential with respect to the neutral of the transformer

    conducts. As the potential of another diode becomes

    the highest, load current is transferred to that diode,

    and the previously conduct diode is reverse biased

    “OFF case”.

    For the rectifier shown in Fig.2.21 the load voltage, primary diode currents and its FFT

    components are shown in Fig.2.22, Fig.2.23 and Fig.2.24 respectively.

    Fig.2.22 Secondary and load voltages of half wave three-phase diode rectifier.

    6

    π 

    6

    5π 

  • 8/17/2019 fullwaverectifier.pdf

    13/21

      Chapter Two 20 

    Fig.2.23 Primary and diode currents.

    Fig.2.24 FFT components of primary and diode currents.

    By considering the interval from

    6

    π  to

    6

    5π  in the output voltage we can calculate the average

    and rms output voltage and current as following:

    mm

    mdc   V V 

    t d t V V  827.02

    33sin

    2

    36/5

    6/

    === ∫   π ω ω π π 

    π 

      and R

     R

    V  I    mmdc

    *827.0

    **2

    33==

    π   (2.70)

    ( )   mmmrms   V V t d t V V  8407.08

    3*3

    2

    1sin

    2

    36/5

    6/

    2 =+== ∫   π ω ω π π 

    π 

      (2.72)

     R

    V  I    mrms

    8407.0=   (2.73)

    Then the diode rms current is equal to secondery current and can be obtaiend as following:

     R

     R

    V  I  I    mmS r  4854.0

    3

    08407===   (2.74)

    Primary current

    Diode current

  • 8/17/2019 fullwaverectifier.pdf

    14/21

    Diode Circuits or Uncontrolled Rectifier   21 

     Note :the rms value of diode current has been obtained from the rms value of load current divided

     by 3 because the diode current has one third pulse of similar three pulses in load current.

    ThePIV of the diodes is m LL   V V  32   =   (2.75)

    Example 7 The rectifier in Fig.2.21 is operated from 460 V 50 Hz supply at secondary side and

    the load resistance is R=20 Ω. If the source inductance is negligible, determine (a) Rectificationefficiency, (b) Form factor (c) Ripple factor (d) Transformer utilization factor, (e) Peak inverse

    voltage (PIV) of each diode.

     Solution:

    (a) V V V V  mS  59.3752*58.265,58.2653

    460====  

    mm

    dc   V V 

    V  827.02

    33==

    π ,

     R

     R

    V  I    mmdc

    0827

    2

    33==

    π  

    mrms   V V  8407.0= , R

    V  I    mrms

    8407.0=   Then, %767.96===

    rmsrms

    dcdc

    ac

    dc

     I V 

     I V 

     P 

     P η   

    (b) %657.101==dc

    rms

    V  FF   

    (c) %28.1811 22

    222

    =−=−=−

    ==   FF V 

    V V 

    V  RF 

    dc

    rms

    dc

    dcrms

    dc

    ac  

    (e) The PIV= 3 V m=650.54V

    2.5.2 Three-Phase Half Wave Rectifier With

    DC Load Current and zero source inductance

    In case of pure DC load current as shown in

    Fig.2.25, the diode current and primary current

    are shown in Fig.2.26.

    To calculate Fourier transform of the diode

    current of Fig.2.26, it is better to move y axis to

    make the function as odd or even to cancel one

    coefficient an or bn respectively. If we put Y-axis

    at point ot  30=ω   then we can deal with the secondary current as even functions. Then, 0=nb  of

    secondary current. Values of na  can be calculated as following:

    32

    13/

    3/

    0o

    o

     I t d  I a ∫

    ==π 

    π 

    ω π 

     

    [ ]

    harmonicstrepleanall  for 

    n for n

     I 

    n for 

    n

     I 

    t nn

     I dwt t n I a

    o

    o

    oon

    0

    17,16,11,10,5,43*

    ,....14,13,8,7,2,13*

    sincos*1 3/

    3/

    3/

    3/

    =

    =−=

    ==

    ==   −−∫

    π 

    π 

    ω π 

    ω π 

    π 

    π 

    π 

    π 

      (2.77)

  • 8/17/2019 fullwaverectifier.pdf

    15/21

      Chapter Two 22 

     

      

     −−++−−++= ...8sin

    8

    17sin

    7

    15sin

    5

    14sin

    4

    12sin

    2

    1sin

    3

    3)(   t t t t t t 

     I  I t  I    OO s   ω ω ω ω ω ω 

    π   (2.78)

    %24.1090924.119

    *21

    2

    3

    3/1))((2

    2

    2

    1

    ==−=−

     

     

     

     

    =−  

      =   π 

    π 

    O

    o

    S  s

     I 

     I  I  I t  I THD  

    Fig.2.26 Primary and secondary current waveforms and FFT components of three-phase half wave

    rectifier with dc load current

       N  e  w   a

      x   i  s

  • 8/17/2019 fullwaverectifier.pdf

    16/21

    Diode Circuits or Uncontrolled Rectifier   23 

     Example 8 Solve example 7 if the load current is 100 A pure DC 

     Solution: (a) V V V V  mS  59.3752*58.265,58.2653

    460====  

    V V V 

    V  mmdc 613.310827.02

    33

    === π  ,  A I dc 100=  

    V V V  mrms 759.3158407.0   == ,  A I rms 100=  

    %37.98100*759.315

    100*613.310====

    rmsrms

    dcdc

    ac

    dc

     I V 

     I V 

     P 

     P η   

    (b) %657.101==dc

    rms

    V  FF   

    (c) %28.1811 22

    222

    =−=−=−

    ==   FF 

    V V 

    V  RF 

    dc

    rms

    dc

    dcrms

    dc

    ac  

    (d) The PIV= 3 V m=650.54V

    2.5 Three-Phase Full Wave Diode Rectifier

    2.5.1 Three-Phase Full Wave Rectifier With Resistive Load

    In the circuit of Fig.2.30, the AC side inductance  LS   is neglected and the load current is pureresistance. Fig.2.31 shows complete waveforms for phase and line to line input voltages andoutput DC load voltages. Fig.2.32 shows diode currents and Fig.2.33 shows the secondary and

     primary currents and PIV of D1. Fig.2.34 shows Fourier Transform components of output DC

    voltage, diode current secondary current and Primary current respectively.

    1   3   5

    4 6   2

    b

    c

     I  L

    V  L

     I  s

     I  p

    a

     Fig.2.30 Three-phase full wave diode bridge rectifier.

    For the rectifier shown in Fig.2.30 the waveforms is as shown in Fig.2.31. The average outputvoltage is :-

     LLm LLm

    mdc   V V V V 

    t d t V V  3505.1654.12333

    sin33

    3/2

    3/

    ===== ∫   π π ω ω π π 

    π 

      (2.91)

     R

     R

     R

     R

    V  I    LL LLmmdc

    3505.123654.133====

    π π   (2.92)

    ( )   LLmmmrms   V V V t d t V V  3516.16554.143*9

    2

    3

    sin3

    33/2

    3/

    2

    ==+== ∫   π ω ω π π 

    π 

      (2.93)

     R

    V  I    mrms

    6554.1=   (2.94)

  • 8/17/2019 fullwaverectifier.pdf

    17/21

      Chapter Two 24 

    Then the diode rms current is

     R

     R

    V  I    mmr  9667.0

    3

    6554.1==   (2.95)

     R

     I 

      m

    S  29667.0=   (2.96)

    Fig.2.31 shows complete waveforms for phase and line to line input voltages and output DC load

    voltages.

    Fig.2.32 Diode currents.

  • 8/17/2019 fullwaverectifier.pdf

    18/21

    Diode Circuits or Uncontrolled Rectifier   25 

    Fig.2.33 Secondary and primary currents and PIV of D1.

    Fig.2.34 Fourier Transform components of output DC voltage, diode current secondary current and

    Primary current respectively of three-phase full wave diode bridge rectifier.

    Example 10 The rectifier shown in Fig.2.30 is operated from 460 V 50 Hz supply and the load

    resistance is  R=20 Ω. If the source inductance is negligible, determine (a) The efficiency, (b)Form factor (c) Ripple factor (d) Peak inverse voltage (PIV) of each diode .

     Solution: (a) V V V V  mS  59.3752*58.265,58.2653

    460====  

    V V V 

    V  mm

    dc 226.621654.133

    ===π 

    ,  A R

     R

    V  I    mmdc 0613.31

    654.133===

    π  

    V V V V  mmrms 752.6216554.14

    3*9

    2

    3==+=

    π ,  A

     R

    V  I    mrms 0876.31

    6554.1==  

  • 8/17/2019 fullwaverectifier.pdf

    19/21

      Chapter Two 26 

    %83.99===rmsrms

    dcdc

    ac

    dc

     I V 

     I V 

     P 

     P η   and (b) %08.100==

    dc

    rms

    V  FF   

    (c) %411 2

    2

    222

    =−=−=−

    ==   FF V 

    V V 

    V  RF 

    dc

    rms

    dc

    dcrms

    dc

    ac  and (d) The PIV= 3 V m=650.54V

    2.5.2 Three-Phase Full Wave Rectifier With DC Load Current

    The supply current in case of pure DC load current is shown in Fig.2.35. Fast Fourier

    Transform of Secondary and primary currents respectively is shown in Fig2.36.As we see it is odd function, then an=0, and

    [ ]

    ....,.........15,14,12,10,9,8,6,4,3,2,0

    ),......3(132),3(

    112),3(

    72),3(

    52,32

    cos2

    sin*2

    1311751

    6/56/

    6/5

    6/

    ==

    ==−=−==

    −== ∫

    n for b

     I b I b I b I b I b

    t nn

     I t d t n I b

    n

    ooooo

    oon

    π π π π π 

    ω π 

    ω ω π 

    π 

    π 

    π 

    π 

     (2.97)

     

      

     ++−−=   t t t t vt 

     I t  I    o s   ω ω ω ω ω 

    π 13sin

    13

    111sin

    11

    17sin

    7

    15sin

    5

    1sin

    32)( (2.98)

    %3125

    1

    23

    1

    19

    1

    17

    1

    13

    1

    11

    1

    7

    1

    5

    1))((

    22222222

      

     +

     

      

     +

     

      

     +

     

      

     +

     

      

     +

     

      

     +

     

      

     +

     

      

     =t  I THD  s  

    Also ))((   t  I THD  s  can be obtained as following:

    oS    I  I 32= , oS    I  I 

    π 3*21 =  then, %01.311

    /3*23/21))((

    2

    2

    1

    =−=−  

      =

    π S 

    S  s

     I  I t  I THD  

    Power Factor =S 

     I 

     I 

     I 

     I  11 )0cos(*   =  

    Fig.2.35 The D1 and D2 currents, secondary and primary currents.

  • 8/17/2019 fullwaverectifier.pdf

    20/21

    Diode Circuits or Uncontrolled Rectifier   27 

    Fig2.36 Fast Fourier Transform of Secondary and primary currents respectively.

    2.5.4 Three-Phase Full Wave Diode Rectifier With Source Inductance

    The source inductance in three-phase diode bridge rectifier Fig.2.37 will change the shape of

    the output voltage than the ideal case (without source inductance) as shown in Fig.2.31. The DCcomponent of the output voltage is reduced. Fig.2.38 shows The output DC voltage of three-

     phase full wave rectifier with source inductance.

    Fig.2.37 Three-phase full wave rectifier with source inductance

    Fig.2.38 The output DC voltage of three-phase full wave rectifier with source inductance

  • 8/17/2019 fullwaverectifier.pdf

    21/21

      Chapter Two 28 

    Commutation angle is ,  

    −=   −

     LL

    oS 

     I  Lu

      ω 21cos 1   (2.109)

    The DC voltage reduction due to source inductance is : oo

    rd    fLI  LI 

    V  6

    2

    6==

    π 

    ω   (2.114)

    The DC voltage without source inductance tacking into account can be calculated as following:

    d  LLrd ceinduc sourcewithout dcactual dc  fLI V V V V  635.1

    tan  −=−=   (2.115)

    −=

    63

    22

    u I  I    oS 

    π 

    π  and

     

      

     =

    2sin

    621

    u

    u

     I  I    oS 

    π  

    The power factor can be calculated from the following equation:

    ( )

    =

     

     

     

     

     

      

     

    =

     

     

     

     =

    63

    sin*3

    2

    cos

    632

    2sin

    62

    2

    cos2

    1

    uu

    uu

    u I 

    u

    u

     I 

    u

     I 

     I  pf 

    o

    o

    π π π π 

    π  

    Example 11 Three phase diode bridge rectifier connected to tree phase 33kV, 50 Hz supply has

    8 mH source inductance to feed 300A pure DC load current Find;(i)  Commutation time and commutation angle.(ii)

     

    DC output voltage.

    (iii)  Power factor.(iv)  Total harmonic distortion of line current.

     Solution:  (i) By substituting for 50**2   π ω  = ,  A I d  300= ,  H  L 008.0= , V V  LL 33000=   in

    (2.109), then orad u 61.14.2549.0   ==  

    (ii) The the actual DC voltage can be obtained from (2.115) as following:

    d  LLrd ceinduc sourcewithout dcactual dc  fLI V V V V  635.1

    tan  −=−=  

    V V dcactual  43830300*008.*50*633000*35.1   =−=  

    (iii) the power factor can be obtained from (2.121) then

    ( ) ( )9644.0

    6

    2549.0

    3*2549.0

    2549.0sin3

    63

    sin*3=

    =

    =π 

    π π 

    π   u

    u

    u pf  Lagging

    (iv) The rms value of supply current can be obtained as following:

     Au I 

     I    d  s 929.2396

    2549.0

    3*

    300*2

    63

    2 22=

     

      

     −=

    −=

      π 

    π 

    π 

    π  

    The rms  value of fundamental component of supply current can be obtained from (2.120) as

    following:  Au

    u

     I  I    oS  28.233

    2

    2549.0sin*

    2*2549.0*

    300*3432*

    2sin

    2

    341   =

     

      

     =

     

      

     =

    π π  

    9644.02

    2549.0cos*

    929.239

    28.233

    2cos*1 =

     

      

     =

     

      

     =

      u

     I 

     I  pf 

     s

    S   Lagging.

    %05.24128.233

    929.2391

    22

    1

    =− 

      

     =−

     

      

     =

    S i

     I 

     I THD