fundamentals of photonics...(fresnel) transverse wave, polarization interference (young) light &...

31
Fundamentals of Photonics Bahaa E. A. Saleh, Malvin Carl Teich 송석호 Physics Department (Room #36-401) 2220-0923, 010-4546-1923, [email protected] http://optics.hanyang.ac.kr/~shsong Midterm Exam 30%, Final Exam 30%, Homework 20%, Attend 10%

Upload: others

Post on 27-Jan-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Fundamentals of PhotonicsBahaa E. A. Saleh, Malvin Carl Teich

    송 석 호

    Physics Department (Room #36-401)2220-0923, 010-4546-1923, [email protected]

    http://optics.hanyang.ac.kr/~shsong

    Midterm Exam 30%, Final Exam 30%, Homework 20%, Attend 10%

  • < 1/4> Course outline

  • (Supplements)

    From Maxwell Eqs to wave equations

    Optical properties of materials

    Optical properties of metals

    < 2/4> Course outline

  • < 3/4> Course outline

  • < 4/4> Course outline

  • Optics

  • Also, see Figure 2-1, Pedrotti

  • (Genesis 1-3) And God said, "Let there be light," and there was light.

  • A Bit of History

    1900180017001600 200010000-1000

    “...and the foot of it of brass, of the lookingglasses of the women

    assembling,” (Exodus 38:8)

    Rectilinear Propagation(Euclid)

    Shortest Path (Almost Right!)(Hero of Alexandria)

    Plane of IncidenceCurved Mirrors(Al Hazen)

    Empirical Law of Refraction (Snell)

    Light as PressureWave (Descartes)

    Law of LeastTime (Fermat)

    v

  • More Recent History

    2000199019801970196019501940193019201910

    Laser(Maiman)

    Quantum Mechanics

    Optical Fiber(Lamm)

    SM Fiber(Hicks)

    HeNe(Javan)

    Polaroid Sheets (Land)Phase Contrast (Zernicke)

    Holography (Gabor)

    Optical Maser(Schalow, Townes)

    GaAs(4 Groups)

    CO2(Patel)

    FEL(Madey)

    Hubble Telescope

    Speed/Light (Michaelson)

    Spont. Emission (Einstein)

    Many New Lasers

    Erbium Fiber Amp

    Commercial Fiber Link (Chicago)

    (Chuck DiMarzio, Northeastern University)

  • Let’s warm-up

    일반물리

    전자기학

  • Question

    How does the light propagate through a glass medium?

    (1) through the voids inside the material.(2) through the elastic collision with matter, like as for a sound.(3) through the secondary waves generated inside the medium.

    Construct the wave front tangent to the wavelets

    Secondaryon-going wave

    Primary incident wave

    What about –r direction?

  • Electromagnetic Waves

    0εQAdE =⋅∫

    rr

    0=⋅∫ AdBrr

    dtdsdE BΦ−=⋅∫

    rr

    dtdisdB EΦμε+μ=⋅∫ 000

    rr

    Gauss’s Law

    No magnetic monopole

    Faraday’s Law (Induction)

    Ampere-Maxwell’s Law

    Maxwell’s Equation

  • Maxwell’s Equation

    Gauss’s Law

    No magnetic monopole

    Faraday’s Law (Induction)

    Ampere-Maxwell’s Law

    ∫∫∫ ερ

    =⋅∇=⋅ dvdvEAdE0

    rrrr

    0=⋅∇=⋅ ∫∫ dvBAdBrrrr

    ∫∫∫ ⋅−=⋅×∇=⋅ AdBdtdAdEsdE

    rrrrrrr

    ∫∫

    ∫∫

    ⋅εμ+⋅μ=

    Φεμ+μ=⋅×∇=⋅

    AdEdtdAdj

    dtdiAdBsdB E

    rrrr

    rrrrr

    000

    000

    tEjB∂∂

    εμ+μ=×∇r

    rrr000

    djtE rr

    =∂∂

    ε0 ( )djjBrrrr

    +μ=×∇ 0

    0ερ

    =⋅∇ Err

    0=⋅∇ Brr

    tBE∂∂

    −=×∇r

    rr⇒

  • Wave equations

    tBE∂∂

    −=×∇r

    rr

    tEB∂∂

    =×∇r

    rr00εμ

    ( ) ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    −∂∂

    =×∇∂∂

    =×∇×∇tB

    tE

    tB

    rrrrrr

    0000 εμεμ

    ( ) BB rrrr 2−∇=×∇×∇ kzjyix ˆˆˆ ∂∂

    +∂∂

    +∂∂

    =∇r

    ( ) ( ) BBBB rrrrrrrr 22 −∇=∇−⋅∇∇=×∇×∇( ) ( ) ( )CBABCACBA rrrrrrrrr ⋅−⋅=××

    2

    2

    002

    tBB

    ∂∂

    =∇r

    rεμ

    2

    2

    002

    tEE

    ∂∂

    =∇r

    rεμ

    022

    002

    2

    =∂∂

    −∂∂

    tB

    xB εμ

    022

    002

    2

    =∂∂

    −∂∂

    tE

    xE εμ

    Wave equations

    In vacuum

  • Scalar wave equation

    2 2

    0 02 2 0x tμ ε∂ Ψ ∂ Ψ− =

    ∂ ∂

    0 cos( )kx tωΨ = Ψ −

    02002 =ωεμ−k cvk

    ≡==00

    1εμ

    ωSpeed of Light

    smmc /103sec/1099792.2 88 ×≈×=

  • Transverse Electro-Magnetic (TEM) waves

    BEtEB

    rrr

    rr⊥⇒

    ∂∂

    εμ−=×∇ 00

    Electromagnetic Wave

  • Energy carried by Electromagnetic Waves

    Poynting Vector : Intensity of an electromagnetic wave

    BESrrr

    ×=0

    2

    0

    2

    0

    0

    1

    1

    BcEc

    EBS

    μ=

    μ=

    μ=

    (Watt/m2)

    ⎟⎠⎞

    ⎜⎝⎛ = c

    EB

    202

    1 EuE ε=Energy density associated with an Electric field :

    2

    021 BuB μ

    =Energy density associated with a Magnetic field :

  • n1n2

    Reflection and Refraction

    11 θ′=θReflected ray

    Refracted ray 2211 sinsin θθ nn =

    Smooth surface Rough surface

  • Reflection and Refraction

    00

    )()(

    )(εμλμε

    λλ ==

    vcnIn dielectric media,

    (Material) Dispersion

  • Interference & Diffraction

  • Reflection and Interference in Thin Films

    • 180 º Phase changeof the reflected light by a media with a larger n

    • No Phase changeof the reflected light by a media with a smaller n

  • Interference in Thin Films

    tn1

    Phase change: π

    n2 Phase change: π

    n2 > n1

    λ=λ==δ1

    12

    nmmt n

    Bright ( m = 1, 2, 3, ···)

    ( ) ( )λ+=λ+==δ1

    21

    21

    12

    nmmt n

    Bright ( m = 0, 1, 2, 3, ···)

    tnPhase change: π

    No Phase change

    ( ) ( )λ+=λ+==δn

    mmt n 21

    212

    λ=λ==δnmmt n2

    Bright ( m = 0, 1, 2, 3, ···)

    Dark ( m = 1, 2, 3, ···)

  • Interference Young’s Double-Slit Experiment

  • Interference

    The path difference

    λ=θ=δ msind( )λ+=θ=δ 21msind

    ⇒ Bright fringes m = 0, 1, 2, ····

    ⇒ Dark fringes m = 0, 1, 2, ····

    The phase differenceλ

    θπ=π⋅

    λδ

    =φsind22

    θ=−=δ sindrr 12

  • Hecht, Optics, Chapter 10

    Diffraction

  • Diffraction

  • Diffraction Grating

  • Diffraction of X-rays by Crystals

    d

    θθ

    θ

    dsinθ

    Incidentbeam

    Reflectedbeam

    λθ md =sin2 : Bragg’s Law

  • Regimes of Optical Diffraction

    d > λ

    Far-fieldFraunhofer

    Near-fieldFresnel

    Evanescent-fieldVector diffraction