hufa75545_datasheet

10
©2001 Fairchild Semiconductor Corporation HUFA75545P3, HUFA75545S3S Rev. B HUFA75545P3, HUFA75545S3S 75A, 80V, 0.010 Ohm, N-Channel, UltraFET® Power MOSFET Packaging Symbol Features Ultra Low On-Resistance -r DS(ON) = 0.010Ω, V GS = 10V Simulation Models - Temperature Compensated PSPICE® and SABER™ Electrical Models - Spice and SABER Thermal Impedance Models - www.fairchild.com Peak Current vs Pulse Width Curve UIS Rating Curve Ordering Information Absolute Maximum Ratings T C = 25 o C, Unless Otherwise Specified This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.mtp.fairchild.com/automotive.html. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. JEDEC TO-220AB JEDEC TO-263AB DRAIN (FLANGE) DRAIN SOURCE GATE HUFA75545P3 GATE SOURCE DRAIN (FLANGE) HUFA75545S3S D G S PART NUMBER PACKAGE BRAND HUFA75545P3 TO-220AB 75545P HUFA75545S3S TO-263AB 75545S NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUFA75545S3ST. HUFA75545P3, HUFA75545S3S UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V DSS 80 V Drain to Gate Voltage (R GS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V DGR 80 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V GS ±20 V Drain Current Continuous (T C = 25 o C, V GS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I D Continuous (T C = 100 o C, V GS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I D Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I DM 75 73 Figure 4 A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figure 6 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P D Derate Above 25 o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 1.8 W W/ o C Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T J , T STG -55 to 175 o C Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T L Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T pkg 300 260 o C o C NOTES: 1. T J = 25 o C to 150 o C. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Data Sheet December 2001

Upload: junaid

Post on 09-Dec-2015

214 views

Category:

Documents


1 download

DESCRIPTION

Semi conductor

TRANSCRIPT

Page 1: HUFA75545_datasheet

©2001 Fairchild Semiconductor Corporation HUFA75545P3, HUFA75545S3S Rev. B

HUFA75545P3, HUFA75545S3S

75A, 80V, 0.010 Ohm, N-Channel, UltraFET® Power MOSFET

Packaging

Symbol

Features

• Ultra Low On-Resistance- r

DS(ON)

= 0.010

Ω,

V

GS

=

10V

• Simulation Models- Temperature Compensated PSPICE® and SABER™

Electrical Models- Spice and SABER Thermal Impedance Models- www.fairchild.com

• Peak Current vs Pulse Width Curve

• UIS Rating Curve

Ordering Information

Absolute Maximum Ratings

T

C

= 25

o

C, Unless Otherwise Specified

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/

Reliability data can be found at: http://www.mtp.fairchild.com/automotive.html.All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

JEDEC TO-220AB JEDEC TO-263AB

DRAIN (FLANGE)

DRAINSOURCE

GATE

HUFA75545P3

GATE

SOURCE

DRAIN (FLANGE)

HUFA75545S3S

D

G

S

PART NUMBER PACKAGE BRAND

HUFA75545P3 TO-220AB 75545P

HUFA75545S3S TO-263AB 75545S

NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUFA75545S3ST.

HUFA75545P3, HUFA75545S3S UNITS

Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

DSS

80 V

Drain to Gate Voltage (R

GS

= 20k

Ω

) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

DGR

80 V

Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

GS

±

20 V

Drain CurrentContinuous (T

C

= 25

o

C, V

GS

= 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

D

Continuous (T

C

= 100

o

C, V

GS

= 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

D

Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I

DM

7573

Figure 4

AA

Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Figure 6

Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P

D

Derate Above 25

o

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2701.8

WW/

o

C

Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T

J

, T

STG

-55 to 175

o

C

Maximum Temperature for SolderingLeads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T

L

Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T

pkg

300260

o

C

o

C

NOTES:

1. T

J

= 25

o

C to 150

o

C.

CAUTION:

Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of thedevice at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Data Sheet December 2001

Page 2: HUFA75545_datasheet

©2001 Fairchild Semiconductor Corporation HUFA75545P3, HUFA75545S3S Rev. B

Electrical Specifications

T

C

= 25

o

C

,

Unless Otherwise Specified

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS

OFF STATE SPECIFICATIONS

Drain to Source Breakdown Voltage BV

DSS

I

D

= 250

µ

A, V

GS

= 0V (Figure 11) 80 - - V

Zero Gate Voltage Drain Current I

DSS

V

DS

= 75V, V

GS

= 0V - - 1

µ

A

V

DS

= 70V, V

GS

= 0V, T

C

= 150

o

C - - 250

µ

A

Gate to Source Leakage Current I

GSS

V

GS

=

±

20V - -

±

100 nA

ON STATE SPECIFICATIONS

Gate to Source Threshold Voltage V

GS(TH)

V

GS

= V

DS

, I

D

= 250

µ

A (Figure 10) 2 - 4 V

Drain to Source On Resistance r

DS(ON)

I

D

= 75A, V

GS

= 10V (Figure 9) - 0.0082 0.010

Ω

THERMAL SPECIFICATIONS

Thermal Resistance Junction to Case R

θ

JC

TO-220 and TO-263 - - 0.55

o

C/W

Thermal Resistance Junction to Ambient

R

θ

JA

- - 62

o

C/W

SWITCHING SPECIFICATIONS

(V

GS

= 10V)

Turn-On Time t

ON

V

DD

= 40V, I

D

= 75AV

GS

=

10V,R

GS

= 2.5

Ω

- - 210 ns

Turn-On Delay Time t

d(ON)

- 14 - ns

Rise Time t

r

- 125 - ns

Turn-Off Delay Time t

d(OFF)

- 40 - ns

Fall Time t

f

- 90 - ns

Turn-Off Time t

OFF

- - 195 ns

GATE CHARGE SPECIFICATIONS

Total Gate Charge Q

g(TOT)

V

GS

= 0V to 20V V

DD

= 40V,I

D

= 75A,I

g(REF)

= 1.0mA

(Figure 13)

- 195 235 nC

Gate Charge at 10V Q

g(10)

V

GS

= 0V to 10V - 105 125 nC

Threshold Gate Charge Q

g(TH)

V

GS

= 0V to 2V - 6.8 8.2 nC

Gate to Source Gate Charge Q

gs

- 15 - nC

Gate to Drain “Miller” Charge Q

gd

- 43 - nC

CAPACITANCE SPECIFICATIONS

Input Capacitance C

ISS

V

DS

= 25V, V

GS

= 0V,f = 1MHz(Figure 12)

- 3750 - pF

Output Capacitance C

OSS

- 1100 - pF

Reverse Transfer Capacitance C

RSS

- 350 - pF

Source to Drain Diode Specifications

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS

Source to Drain Diode Voltage V

SD

I

SD

= 75A - - 1.25 V

I

SD

= 35A - - 1.00 V

Reverse Recovery Time t

rr

I

SD

= 75A, dI

SD

/dt = 100A/

µ

s - - 100 ns

Reverse Recovered Charge Q

RR

I

SD

= 75A, dI

SD

/dt = 100A/

µ

s - - 300 nC

HUFA75545P3, HUFA75545S3S

Page 3: HUFA75545_datasheet

©2001 Fairchild Semiconductor Corporation HUFA75545P3, HUFA75545S3S Rev. B

Typical Performance Curves

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

FIGURE 4. PEAK CURRENT CAPABILITY

TC, CASE TEMPERATURE (oC)

PO

WE

R D

ISS

IPA

TIO

N M

ULT

IPL

IER

00 25 50 75 100 175

0.2

0.4

0.6

0.8

1.0

1.2

125 150

20

40

60

80

50 75 100 125 1500

25

I D, D

RA

IN C

UR

RE

NT

(A

)

TC, CASE TEMPERATURE (oC)

VGS = 10V

175

0.1

1

2

10-4 10-3 10-2 10-1 100 1010.01

10-5

t, RECTANGULAR PULSE DURATION (s)

ZθJ

C, N

OR

MA

LIZ

ED

TH

ER

MA

L IM

PE

DA

NC

E

SINGLE PULSE NOTES:DUTY FACTOR: D = t1/t2PEAK TJ = PDM x ZθJC x RθJC + TC

PDM

t1t2

DUTY CYCLE - DESCENDING ORDER0.50.20.10.05

0.010.02

100

2000

50

10-4 10-3 10-2 10-1 100 10110-5

I DM

, PE

AK

CU

RR

EN

T (

A)

t , PULSE WIDTH (s)

TC = 25oC

I = I25 175 - TC

150

FOR TEMPERATURESABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS:

VGS = 10V

1000

TRANSCONDUCTANCEMAY LIMIT CURRENTIN THIS REGION

HUFA75545P3, HUFA75545S3S

Page 4: HUFA75545_datasheet

©2001 Fairchild Semiconductor Corporation HUFA75545P3, HUFA75545S3S Rev. B

FIGURE 5. FORWARD BIAS SAFE OPERATING AREA

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.

FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

Typical Performance Curves (Continued)

10

100

1 10 100

600

1

200

100µs

10ms

1ms

VDS, DRAIN TO SOURCE VOLTAGE (V)

I D, D

RA

IN C

UR

RE

NT

(A

)

LIMITED BY rDS(ON)AREA MAY BEOPERATION IN THIS

TJ = MAX RATEDTC = 25oC

SINGLE PULSE

10

100

600

0.001 0.01 0.1 10

I AS

, AVA

LA

NC

HE

CU

RR

EN

T (

A)

tAV, TIME IN AVALANCHE (ms)

tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)If R = 0

If R ≠ 0tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]

STARTING TJ = 25oC

STARTING TJ = 150oC

1

30

60

90

120

150

2 3 4 5 6

0

I D, D

RA

IN C

UR

RE

NT

(A

)

VGS, GATE TO SOURCE VOLTAGE (V)

PULSE DURATION = 80µsDUTY CYCLE = 0.5% MAXVDD = 15V

TJ = 175oC

TJ = 25oC TJ = -55oC

30

60

90

120

150

0 1 2 3 4

0

I D, D

RA

IN C

UR

RE

NT

(A

)

VDS, DRAIN TO SOURCE VOLTAGE (V)

VGS =5V

VGS = 20V

PULSE DURATION = 80µsDUTY CYCLE = 0.5% MAX TC = 25oC

VGS = 10VVGS = 7VVGS = 6V

0.5

1.0

1.5

2.0

2.5

-80 -40 0 40 80 120 200

NO

RM

AL

IZE

D D

RA

IN T

O S

OU

RC

E

TJ, JUNCTION TEMPERATURE (oC)

ON

RE

SIS

TAN

CE

VGS = 10V, ID = 75APULSE DURATION = 80µsDUTY CYCLE = 0.5% MAX

1600.4

0.8

1.0

1.2

-80 -40 0 40 80 120 200

NO

RM

AL

IZE

D G

AT

E

TJ, JUNCTION TEMPERATURE (oC)

VGS = VDS, ID = 250µA

TH

RE

SH

OL

D V

OLT

AG

E

0.6

160

HUFA75545P3, HUFA75545S3S

Page 5: HUFA75545_datasheet

©2001 Fairchild Semiconductor Corporation HUFA75545P3, HUFA75545S3S Rev. B

FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.

FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT

Typical Performance Curves (Continued)

0.9

1.0

1.1

1.2

-80 -40 0 40 80 120 160 200

0.8

TJ, JUNCTION TEMPERATURE (oC)

NO

RM

AL

IZE

D D

RA

IN T

O S

OU

RC

EB

RE

AK

DO

WN

VO

LTA

GE

ID = 250µA

1000

10000

0.1 1 10 80

100

C, C

APA

CIT

AN

CE

(p

F)

VDS, DRAIN TO SOURCE VOLTAGE (V)

VGS = 0V, f = 1MHz

CISS = CGS + CGD

COSS ≅ CDS + CGD

CRSS = CGD

2

4

6

8

10

0 30 60 90 120

0

VG

S, G

AT

E T

O S

OU

RC

E V

OLT

AG

E (

V) VDD = 40V

Qg, GATE CHARGE (nC)

ID = 75AID = 35A

WAVEFORMS INDESCENDING ORDER:

HUFA75545P3, HUFA75545S3S

Page 6: HUFA75545_datasheet

©2001 Fairchild Semiconductor Corporation HUFA75545P3, HUFA75545S3S Rev. B

HUFA75545P3, HUFA75545S3S

Test Circuits and Waveforms

FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS

FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. SWITCHING TIME WAVEFORM

tP

VGS

0.01Ω

L

IAS

+

-

VDS

VDDRG

DUT

VARY tP TO OBTAIN

REQUIRED PEAK IAS

0V

VDD

VDS

BVDSS

tP

IAS

tAV

0

RL

VGS +

-

VDS

VDD

DUT

Ig(REF)

VDD

Qg(TH)

VGS = 2V

Qg(10)

VGS = 10V

Qg(TOT)

VGS = 20V

VDS

VGS

Ig(REF)

0

0

Qgs Qgd

VGS

RL

RGS

DUT

+

-VDD

VDS

VGS

tON

td(ON)

tr

90%

10%

VDS90%

10%

tf

td(OFF)

tOFF

90%

50%50%

10%PULSE WIDTH

VGS

0

0

Page 7: HUFA75545_datasheet

©2001 Fairchild Semiconductor Corporation HUFA75545P3, HUFA75545S3S Rev. B

PSPICE Electrical Model .SUBCKT HUFA75545 2 1 3 ; rev 21 May 1999

CA 12 8 5.4e-9CB 15 14 5.3e-9CIN 6 8 3.4e-9

DBODY 7 5 DBODYMODDBREAK 5 11 DBREAKMODDPLCAP 10 5 DPLCAPMOD

EBREAK 11 7 17 18 87.4EDS 14 8 5 8 1EGS 13 8 6 8 1ESG 6 10 6 8 1EVTHRES 6 21 19 8 1EVTEMP 20 6 18 22 1

IT 8 17 1

LDRAIN 2 5 1.0e-9LGATE 1 9 5.1e-9LSOURCE 3 7 4.4e-9

MMED 16 6 8 8 MMEDMODMSTRO 16 6 8 8 MSTROMODMWEAK 16 21 8 8 MWEAKMOD

RBREAK 17 18 RBREAKMOD 1RDRAIN 50 16 RDRAINMOD 4.80e-3RGATE 9 20 0.87RLDRAIN 2 5 10RLGATE 1 9 51RLSOURCE 3 7 44RSLC1 5 51 RSLCMOD 1e-6RSLC2 5 50 1e3RSOURCE 8 7 RSOURCEMOD 1.6e-3RVTHRES 22 8 RVTHRESMOD 1RVTEMP 18 19 RVTEMPMOD 1

S1A 6 12 13 8 S1AMODS1B 13 12 13 8 S1BMODS2A 6 15 14 13 S2AMODS2B 13 15 14 13 S2BMOD

VBAT 22 19 DC 1

ESLC 51 50 VALUE=(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*320),3))

.MODEL DBODYMOD D (IS = 3.6e-12 RS = 2.1e-3 TRS1 = 1.5e-3 TRS2 = 5.1e-6 CJO = 4.6e-9 TT = 3.3e-8 M = 0.55)

.MODEL DBREAKMOD D (RS = 2.3e-1 TRS1 = 0 TRS2 = -1.8e-5)

.MODEL DPLCAPMOD D (CJO = 4.8e-9 IS = 1e-30 N = 10 VJ = 1 M = 0.8)

.MODEL MMEDMOD NMOS (VTO = 3.04 KP = 6 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.87)

.MODEL MSTROMOD NMOS (VTO = 3.5 KP = 105 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)

.MODEL MWEAKMOD NMOS (VTO = 2.65 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.7 )

.MODEL RBREAKMOD RES (TC1 = 1.3e-3 TC2 = -1e-6)

.MODEL RDRAINMOD RES (TC1 = 9e-3 TC2 = 2.8e-5)

.MODEL RSLCMOD RES (TC1 = 1.53e-3 TC2 = 2e-5)

.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)

.MODEL RVTHRESMOD RES (TC1 = -2.3e-3 TC2 = -1.2e-5)

.MODEL RVTEMPMOD RES (TC1 = -2.9e-3 TC2 = 5e-7)

.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5 VOFF= -3)

.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3 VOFF= -5)

.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF= 0.5)

.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.5)

.ENDS

NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

1822

+ -

68

+

-

551

+

-

198

+ -

1718

68

+

-

58 +

-

RBREAK

RVTEMP

VBAT

RVTHRES

IT

17 18

19

22

12

13

15S1A

S1B

S2A

S2B

CA CB

EGS EDS

14

8

138

1413

MWEAK

EBREAKDBODY

RSOURCE

SOURCE

11

7 3

LSOURCE

RLSOURCE

CIN

RDRAIN

EVTHRES 1621

8

MMED

MSTRO

DRAIN2

LDRAIN

RLDRAIN

DBREAK

DPLCAP

ESLC

RSLC1

10

5

51

50

RSLC2

1GATE RGATE

EVTEMP

9

ESG

LGATE

RLGATE20

+

-

+

-

+

-

6

HUFA75545P3, HUFA75545S3S

Page 8: HUFA75545_datasheet

©2001 Fairchild Semiconductor Corporation HUFA75545P3, HUFA75545S3S Rev. B

HUFA75545P3, HUFA75545S3S

SABER Electrical Model REV 21 may 1999

template HUFA75545 n2,n1,n3electrical n2,n1,n3var i iscld..model dbodymod = (is = 3.6e-12, cjo = 4.6e-9, tt = 3.3e-8, m = 0.55)d..model dbreakmod = ()d..model dplcapmod = (cjo = 4.8e-9, is = 1e-30, vj=1.0, m = 0.8 )m..model mmedmod = (type=_n, vto = 3.04, kp = 6, is = 1e-30, tox = 1)m..model mstrongmod = (type=_n, vto = 3.5, kp = 105, is = 1e-30, tox = 1)m..model mweakmod = (type=_n, vto = 2.65, kp = 0.12, is = 1e-30, tox = 1)sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5, voff = -3)sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -3, voff = -5)sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.5, voff = 0.5)sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.5)

c.ca n12 n8 = 5.4e-9c.cb n15 n14 = 5.3e-9c.cin n6 n8 = 3.4e-9

d.dbody n7 n71 = model=dbodymodd.dbreak n72 n11 = model=dbreakmodd.dplcap n10 n5 = model=dplcapmod

i.it n8 n17 = 1

l.ldrain n2 n5 = 1e-9l.lgate n1 n9 = 5.1e-9l.lsource n3 n7 = 4.4e-9

m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1um.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1um.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u

res.rbreak n17 n18 = 1, tc1 = 1.3e-3, tc2 = -1e-6res.rdbody n71 n5 = 2.1e-3, tc1 = 1.5e-3, tc2 = 5.1e-6res.rdbreak n72 n5 = 2.3e-1, tc1 = 0, tc2 = -1.8e-5res.rdrain n50 n16 = 4.8e-3, tc1 = 9e-3, tc2 = 2.8e-5res.rgate n9 n20 = 0.87res.rldrain n2 n5 = 10res.rlgate n1 n9 = 51res.rlsource n3 n7 = 44res.rslc1 n5 n51 = 1e-6, tc1 = 1.53e-3, tc2 = 2e-5res.rslc2 n5 n50 = 1e3res.rsource n8 n7 = 1.6e-3, tc1 = 1e-3, tc2 = 1e-6res.rvtemp n18 n19 = 1, tc1 = -2.9e-3, tc2 = 5e-7res.rvthres n22 n8 = 1, tc1 = -2.3e-3, tc2 = -1.2e-5

spe.ebreak n11 n7 n17 n18 = 87.4spe.eds n14 n8 n5 n8 = 1spe.egs n13 n8 n6 n8 = 1spe.esg n6 n10 n6 n8 = 1spe.evtemp n20 n6 n18 n22 = 1spe.evthres n6 n21 n19 n8 = 1

sw_vcsp.s1a n6 n12 n13 n8 = model=s1amodsw_vcsp.s1b n13 n12 n13 n8 = model=s1bmodsw_vcsp.s2a n6 n15 n14 n13 = model=s2amodsw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod

v.vbat n22 n19 = dc=1

equations i (n51->n50) +=iscliscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/320))** 3))

1822

+ -

68

+

-

198

+ -

1718

68

+

-

58 +

-

RBREAK

RVTEMP

VBAT

RVTHRES

IT

17 18

19

22

12

13

15S1A

S1B

S2A

S2B

CA CB

EGS EDS

14

8

138

1413

MWEAK

EBREAKDBODY

RSOURCE

SOURCE

11

7 3

LSOURCE

RLSOURCE

CIN

RDRAIN

EVTHRES 1621

8

MMED

MSTRO

DRAIN2

LDRAIN

RLDRAIN

DBREAK

DPLCAP

ISCL

RSLC1

10

5

51

50

RSLC2

1GATE RGATE

EVTEMP

9

ESG

LGATE

RLGATE20

+

-

+

-

+

-

6

RDBODY

RDBREAK

72

71

Page 9: HUFA75545_datasheet

©2001 Fairchild Semiconductor Corporation HUFA75545P3, HUFA75545S3S Rev. B

SPICE Thermal Model

REV 21 May 1999

HUFA75545T

CTHERM1 th 6 6.4e-3CTHERM2 6 5 3.0e-2CTHERM3 5 4 1.4e-2CTHERM4 4 3 1.6e-2CTHERM5 3 2 5.5e-2CTHERM6 2 tl 1.5

RTHERM1 th 6 3.2e-3RTHERM2 6 5 8.1e-3RTHERM3 5 4 2.3e-2RTHERM4 4 3 1.3e-1RTHERM5 3 2 1.8e-1RTHERM6 2 tl 3.8e-2

SABER Thermal ModelSABER thermal model HUFA75545T

template thermal_model th tlthermal_c th, tlctherm.ctherm1 th 6 = 6.4e-3ctherm.ctherm2 6 5 = 3.0e-2ctherm.ctherm3 5 4 = 1.4e-2ctherm.ctherm4 4 3 = 1.6e-2ctherm.ctherm5 3 2 = 5.5e-2ctherm.ctherm6 2 tl = 1.5

rtherm.rtherm1 th 6 = 3.2e-3rtherm.rtherm2 6 5 = 8.1e-3rtherm.rtherm3 5 4 = 2.3e-2rtherm.rtherm4 4 3 = 1.3e-1rtherm.rtherm5 3 2 = 1.8e-1rtherm.rtherm6 2 tl = 3.8e-2

RTHERM4

RTHERM6

RTHERM5

RTHERM3

RTHERM2

RTHERM1

CTHERM4

CTHERM6

CTHERM5

CTHERM3

CTHERM2

CTHERM1

tl

2

3

4

5

6

th JUNCTION

CASE

HUFA75545P3, HUFA75545S3S

Page 10: HUFA75545_datasheet

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHERNOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILDDOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCTOR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENTRIGHTS, NOR THE RIGHTS OF OTHERS.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and isnot intended to be an exhaustive list of all such trademarks.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.As used herein:1. Life support devices or systems are devices orsystems which, (a) are intended for surgical implant intothe body, or (b) support or sustain life, or (c) whosefailure to perform when properly used in accordancewith instructions for use provided in the labeling, can bereasonably expected to result in significant injury to theuser.

2. A critical component is any component of a lifesupport device or system whose failure to perform canbe reasonably expected to cause the failure of the lifesupport device or system, or to affect its safety oreffectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status Definition

Advance Information

Preliminary

No Identification Needed

Obsolete

This datasheet contains the design specifications forproduct development. Specifications may change inany manner without notice.

This datasheet contains preliminary data, andsupplementary data will be published at a later date.Fairchild Semiconductor reserves the right to makechanges at any time without notice in order to improvedesign.

This datasheet contains final specifications. FairchildSemiconductor reserves the right to make changes atany time without notice in order to improve design.

This datasheet contains specifications on a productthat has been discontinued by Fairchild semiconductor.The datasheet is printed for reference information only.

Formative orIn Design

First Production

Full Production

Not In Production

OPTOLOGIC™OPTOPLANAR™PACMAN™POP™Power247™PowerTrenchQFET™QS™QT Optoelectronics™Quiet Series™SILENT SWITCHER

FASTFASTr™FRFET™GlobalOptoisolator™GTO™HiSeC™ISOPLANAR™LittleFET™MicroFET™MicroPak™MICROWIRE™

Rev. H4

ACEx™Bottomless™CoolFET™CROSSVOLT™DenseTrench™DOME™EcoSPARK™E2CMOSTM

EnSignaTM

FACT™FACT Quiet Series™

SMART START™STAR*POWER™Stealth™SuperSOT™-3SuperSOT™-6SuperSOT™-8SyncFET™TinyLogic™TruTranslation™UHC™UltraFET

STAR*POWER is used under license

VCX™