kul_bioremediasis2

80
Handout: BIOREMEDIASI SENYAWA PENCEMAR Bahan Kuliah Sudrajat FMIPA Unmul Samarinda

Upload: endah-yulita

Post on 01-Nov-2014

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Kul_BioremediasiS2

Handout:BIOREMEDIASI

SENYAWA PENCEMAR

Bahan Kuliah

SudrajatFMIPA UnmulSamarinda

Page 2: Kul_BioremediasiS2

APA SAJA SENYAWA-SENYAWA PENCEMAR LINGKUNGAN?

Pencemar Senyawa-senyawa yang

secara alami ditemukan di alam tetapi jumlahnya (konsentrasinya) sangat tinggi tidak alami.

Contoh: Minyak mentah,

minyak hasil penyulingan

Fosfat Logam berat

Senyawa xenobiotik Senyawa kimia hasil

rekayasa manusia yang sebelumnya tidak pernah ditemukan di alam.

Contoh: Pestisida Herbisida Plastik Serat sintetis

Page 3: Kul_BioremediasiS2

REMEDIASI LINGKUNGAN

• Remediasi: Proses perbaikan.

• Proses perbaikan lingkungan yang tercemar.

• Pendekatan-pendekatan yang dilakukan untuk menghilangkan pencemar dari lingkungan.

Page 4: Kul_BioremediasiS2

TEKNOLOGI YANG UMUM DIGUNAKAN UNTUK MENGHILANGKAN SENYAWA

PENCEMAR

Ekstraksi uap tanah Tekanan udara Serapan panas Pencucian tanah Dehalogenasi kimiawi Ekstraksi tanah Penggelontoran tanah in situ Bioremediasi

Page 5: Kul_BioremediasiS2

BIOREMEDIASI SENYAWA ORGANIK:

Proses mengubah senyawa pencemar organik yang berbahaya menjadi senyawa lain yang lebih aman dengan memanfaatkan organisme. 

Melibatkan proses degradasi molekular melalui aktifitas biologis.

Campur tangan manusia untuk mempercepat degradasi senyawa pencemar yang berbahaya agar turun konsentrasinya atau menjadi senyawa lain yang lebih tidak berbahaya melalui rekayasa proses alami atau proses mikrobiologis dalam tanah, air dan udara.

Page 6: Kul_BioremediasiS2

KEUNGGULAN BIOREMEDIASI SENYAWA ORGANIK

Proses alami. Mengubah molekul senyawa pencemar

organik, bukan hanya memindahkan.  Beaya paling murah dibandingkan cara

yang lain. Hasil akhir degradasi adalah gas karbon

dioksida, air, dan senyawa-senyawa sederhana yang ramah lingkungan.

Page 7: Kul_BioremediasiS2

ALASAN PENGGUNAAN PERLAKUAN BIOLOGIS

Murah, karena: Dapat digunakan in-situ sehingga

mengurangi beaya pengangkutan dan gangguan lingkungan.

Mikroba alami dapat digunakan.

Page 8: Kul_BioremediasiS2

PELAKU UTAMA:

• Mikroorganisme :

Bakteria, Sianobakteria, dan fungi > Remediasi oleh mikrobia

• Tanaman > Fitoremediasi

• Mikroorganisme dan tanaman

Page 9: Kul_BioremediasiS2

PENERAPAN BIOREMEDIASI

Situs-situs yang sulit dijangkau Lingkungan di bawah permukaan

tanah Air berminyak Limbah Nuklir

Page 10: Kul_BioremediasiS2

BIDANG ILMU YANG DIBUTUHKAN UNTUK KEBERHASILAN BIOREMEDIASI

Ilmu tanah Geokimia organik

dan anorganik Geofisika Hidrologi

Rekayasa bioproses

Modeling komputer Mikrobiologi

dan/atau botani

Page 11: Kul_BioremediasiS2

KEUNTUNGAN MENGGUNAKAN MIKROBIA UNTUK MENDEGRADASI SENYAWA PENCEMAR ORGANIK:

Jumlahnya banyak dan ada dimana-mana Jalur metabolisme dalam aktivitas

hidupnya dapat dimanfaatkan untuk mendegradasi senyawa pencemar organik dan mengubahnya menjadi senyawa yang lebih tidak berbahaya

Page 12: Kul_BioremediasiS2

PERTIMBANGAN KIMIA DAN MIKROBIOLOGIS YANG PERLU

DIPERTIMBANGKAN:

• Apakah kontaminannya dapat terdegradasi secara biologis?– hidrokarbon minyak bumi sederhana– hidrokarbon aromatik (hingga 3 cincin)– amina sederhana– ester– keton– eter

Page 13: Kul_BioremediasiS2

SENYAWA PENCEMAR ORGANIK YANG SECARA POTENSIAL DAPAT

DIBIOREMEDIASIMudah didegradasi

____________

Sedikit terdegradasi

_____________

Sulit terdegradasi_____________

Umumnya tidak terdegradasi

_____________BBM,Minyak tanah

kreosot, tars batubara

Pelarut terkorinasi (TCE)

Dioxins

keton danalkohol

Pentakoro-fenol (PCP)

Beberapa pestisida dan herbisida

Bifenil terpoliklorinasi (PCB)

Aromatikmonosiklik

Aromatikbisiklik

(naftalena)

Page 14: Kul_BioremediasiS2

BIOREMEDIASI SENYAWA ORGANIK PADA SKALA

MIKROSKOPIS

Nutrien pembatas

Sumber karbon/energibagi bakteria

Page 15: Kul_BioremediasiS2

Pengolahan lahan tercemar senyawa organik dapat dikelompokkan ke dalam:

Ex situ – pengolahan dilakukan di tempat lain sehingga perlu pemindahan.

In situ – pengolahan dilakukan di tempat pencemaran tanpa pemindahan.

PENGOLAHAN BIOLOGIS LAHAN TERCEMAR SENYAWA ORGANIK

Page 16: Kul_BioremediasiS2

BIOREMEDIASI EX-SITUTanah terkontaminasi diangkat ke dan diperlakukan di permukaan

Page 17: Kul_BioremediasiS2

CONTOH PENGOLAHAN TANAH TERCEMAR SENYAWA ORGANIK

SECARA EX SITU (1)

1.Slurry Phase : Bejana besar digunakan sebagai “bio-reactor” yang mengandung tanah, air, nutrisi dan udara untuk membuat mikroba aktif mendegradasi senyawa pencemar.

Page 18: Kul_BioremediasiS2

BIOREAKTOR

Cairan terkontaminasi

Tanah terkontaminasi

Saluran keluar tanah

Pengatur suhu

PengadukUap keluar

Udara masuk

Nutrien

Saluran keluar cairan

Page 19: Kul_BioremediasiS2

CONTOH PENGOLAHAN TANAH TERCEMAR SENYAWA ORGANIK

SECARA EX SITU (2)

2.Composting: Limbah dicampur dengan jerami atau bahan lain untuk mempermudah masuknya air, udara, dan nutrisi.

Tiga tipe pengomposan:

* Dalam Lubang

* Mechanically agitated in-vessel

* Tumpukan

Page 20: Kul_BioremediasiS2

CONTOH PENGOLAHAN TANAH TERCEMAR SENYAWA ORGANIK

SECARA EX SITU (3)

3.Biopile: tanah tercemar tidak dipindahkan namun diangkat ke permukaan, ditumpuk, dan diberi perlakuan penambahan air, udara, dan nutrien.

Page 21: Kul_BioremediasiS2

BIOFILES

Nutrien/airLapisan

Gravel

Penampungan Leachate

Lapisan Kedap Air

Tanah terkontaminasi

Page 22: Kul_BioremediasiS2
Page 23: Kul_BioremediasiS2

CONTOH PENGOLAHAN TANAH TERCEMAR SENYAWA ORGANIK

SECARA EX SITU (4)

4.Landfarming: Tanah terkontaminasi dipindahkan dan disebar di permukaan lapangan kemudian diperlakukan dengan penambahan bakteri, air, udara, dan nutrisi. Cara ini yang paling sering digunakan.

Page 24: Kul_BioremediasiS2

LANDFARMING

Tangki

Saringan/PompaUdara

Lapisan Gravel

Tanah terkontaminasi

Page 25: Kul_BioremediasiS2
Page 27: Kul_BioremediasiS2

CONTOH PENGOLAHAN TANAH TERCEMAR SENYAWA ORGANIK IN

SITU (1)

Bio-venting: pemompaan udara dan nutrisi melalui

sumur injeksi.

Air Sparging: pemompaan udara untuk meningkatkan

aktifitas degradasi oleh mikroba.

Page 28: Kul_BioremediasiS2

2.1.Biostimulation

Biosparging

Page 29: Kul_BioremediasiS2
Page 30: Kul_BioremediasiS2

AIR SPARGING

Page 31: Kul_BioremediasiS2

CONTOH PENGOLAHAN TANAH TERCEMAR SENYAWA ORGANIK IN

SITU (2)

Injeksi Hidrogen Peroksida : menggunakan sprinkler atau pemipaan.

Sumur Ekstraksi : Untuk mengeluarkan air tanah yang kemudian ditambah nutrisi dan oksigen dan dimasukkan kembali ke dalam tanah melalui sumur injeksi.

Page 32: Kul_BioremediasiS2

Zona terkontaminasi

Permukaan air tanah

yang lama

Permukaan air tanah yang

baru

Pengolahan Air

Penambahan Nutrien/ Oksigen

Sumur Recovery

Sumur Injeksi

Page 33: Kul_BioremediasiS2
Page 34: Kul_BioremediasiS2

3.KOMBINASI BIOREMEDIASI EX-SITU DAN IN-SITU

Unsaturatedzone

Dalam cara ini aktifitas mikrobia penghuni tanah ditingkatkan

Aquifer

Page 35: Kul_BioremediasiS2

OPTIMASI BIOREMEDIASI LAHAN TERCEMAR SENYAWA ORGANIK (1)

Untuk mengoptimalkan dan mempercepat biodegradasi senyawa pencemar yang ada di dalam air dan tanah dapat digunakan mikroba yang telah beradaptasi dan digabungkan dengan: Menjamin ketersediaan air (kadar air

antara 30-80%). Menambahkan nutrisi (nitrogen,

fosfor, sulfur).

Page 36: Kul_BioremediasiS2

OPTIMASI BIOREMEDIASI LAHAN TERCEMAR SENYAWA ORGANIK (2)

Menjamin ketersediaan oksigen.

(jika tipe degradasi aerobik) 2-3 kg oksigen per kg hidrokarbon yang didegradasi.

Menjamin pH moderat – Tidak terlalu masam maupun basa, antara 6-9.

Menjamin suhu yang moderat - 10o to 40oC.

Page 37: Kul_BioremediasiS2

OPTIMASI BIOREMEDIASI LAHAN TERCEMAR SENYAWA ORGANIK (3)

Penambahan enzim, katalis kimia untuk mendegradasi senyawa-senyawa limbah.

Penambahan surfaktan (detergen).

Page 38: Kul_BioremediasiS2

KELEMAHAN PERLAKUAN BIOLOGIS

Kadang-kadang tidak efektif di beberapa lokasi karena toksisitas pencemar: Logam Senyawa organik berkhlor Garam-garam anorganik

Page 39: Kul_BioremediasiS2

WAKTU YANG DIPERLUKAN

in situ perlu waktu bervariasi antara 1 - 6 tahun.

ex situ antara 1-7 bulan.

Page 40: Kul_BioremediasiS2

REMEDIASI LAHAN TERCEMAR SENYAWA ANORGANIK (LOGAM)

Page 41: Kul_BioremediasiS2

INTERAKSI LOGAM-MIKROBIA

Page 42: Kul_BioremediasiS2

LOGAM BERAT YANG DAPAT DIPERLAKUKAN

Logam beracun• Uranium• Kromium• Selenium• Timbal (Pb)• Teknetium• Raksa

Logam lainnya• Vanadium• Molibdenum• Tembaga• Emas• Perak

Page 43: Kul_BioremediasiS2

BIOLEACHING

Mekanisme mobilisasi logam Produksi asam organik atau asam sulfat yang

dapat membentuk khelat logam Mikrobia heterotropik = asam organik Thiobacillus spp. = asam sulfat

Meleaching logam dari padatan limbah kota Zn, Cu, Cr, Pb, Ni, Al

Ada hubungan antara efisiensi penghilangan dengan pH

Page 44: Kul_BioremediasiS2

BIOSORPSI

Biosorpsi merupakan salah satu mekanisme imobilisasi logam

Logam terserap di permukaan sel oleh interaksi anion-kation

Page 45: Kul_BioremediasiS2
Page 46: Kul_BioremediasiS2

OVERVIEW FITOREMEDIASI

Page 47: Kul_BioremediasiS2

Phytoremediation can be applied as long as the concentration of the pollutant is within an appropriate concentration range, which shall not be too high, since it may cause phytotoxicity to the plant

Page 48: Kul_BioremediasiS2

Phytoremediation can be performed following different methods:

• Phytoextraction: Uptake and concentration of pollutants from the environment into the plant biomass.

• Phytostabilization: Reduction of the mobility of the contaminants in the environment.

• Phytotransformation: Chemical modification of the environmental substances as a direct result of the plant metabolism.

Page 49: Kul_BioremediasiS2

FITOEKSTRAKSI

Absorpsi logam berat oleh akar tanaman dan translokasinya dalam tanaman

Page 50: Kul_BioremediasiS2

FITOSTABILISASI

Imobilisasi logam dalam tanah oleh penjerapan, pengendapan dan kompleksasi.

Page 51: Kul_BioremediasiS2

• Phytostimulation: Enhancement of the native soil microbial activity for the degradation of contaminants.

• Phytovolatilization: Removal of substances from soil or water with release into the air.

• Rhizofiltration: Filtering water through a mass of roots to remove toxic substances or excess nutrients.

Page 52: Kul_BioremediasiS2

RHIZOFILTRASI

Penghilangan logam dari lingkungan perairan

Page 53: Kul_BioremediasiS2

• Regarding the rhizosphere, there are other techniques besides the rhizofiltration.

• The roots can be used as stimulator of the micro-organisms living there due to the exudates that plants expulse in this medium.

• This can increase the amount of organisms in 2 or 3 orders of magnitude.

Page 54: Kul_BioremediasiS2

• Within remediation, one of the most important factors to take into account is the tolerance of the plant.

• The same chemical species may produce different effects at the same concentration in different plants.

• For this reason, it is important to know about the background levels in the polluted area: – Sites with natural high concentration of some pollutant

may lead to an increased presence of tolerant species. – These species are of big interest for phytoremediation

and hence many are used for remediation purposes.

Page 55: Kul_BioremediasiS2

• These plants are able to accumulate due to different detoxifying mechanisms such as the chelation of heavy metals or the storage of the contaminants in vacuoles or the cellular wall

• Plants which are able to accumulate extremely high concentrations in their tissues are considered hiperaccumulator species. Although their ability of accumulating high concentrations of metals is highly interesting, these species normally only show low growth rates and hence are not suitable for extracting high amounts of pollutants from the soil.

Page 56: Kul_BioremediasiS2

• However there are plants which are able to accumulate lower concentrations of metal but present higher growth rates. For this reason, these species showed to be more suitable for phytoextraction processes.

• The low accumulation capacity of these species may be highly improved by the addition of synthetic chelates, which increase the solubility of metal in the soil, making them more bioavailable for the plant and hence increasing the uptake rate of metals by the plant

Page 57: Kul_BioremediasiS2

• . Examples of chelating agents are EDTA, NTA or weak organic acids, such as citric acid. Chelates, however, have to be used with caution, since they may increase the mobility of pollutants, posing a risk of contamination of underlying groundwaters

• They may also provoke negative effects for the native microbial community of the soil. In particular, EDTA has recently been banned as a chelating agent, due to its toxicity for the soil microbiota and its high persistence.

Page 58: Kul_BioremediasiS2

• These plants are able to accumulate due to different detoxifying mechanisms such as the chelation of heavy metals or the storage of the contaminants in vacuoles or the cellular wall

• Plants which are able to accumulate extremely high concentrations in their tissues are considered hiperaccumulator species. Although their ability of accumulating high concentrations of metals is highly interesting, these species normally only show low growth rates and hence are not suitable for extracting high amounts of pollutants from the soil.

Page 59: Kul_BioremediasiS2

• However there are plants which are able to accumulate lower concentrations of metal but present higher growth rates. For this reason, these species showed to be more suitable for phytoextraction processes.

• The low accumulation capacity of these species may be highly improved by the addition of synthetic chelates, which increase the solubility of metal in the soil, making them more bioavailable for the plant and hence increasing the uptake rate of metals by the plant

Page 60: Kul_BioremediasiS2

• Examples of chelating agents are EDTA, NTA or weak organic acids, such as citric acid. Chelates, however, have to be used with caution, since they may increase the mobility of pollutants, posing a risk of contamination of underlying groundwaters

• They may also provoke negative effects for the native microbial community of the soil. In particular, EDTA has recently been banned as a chelating agent, due to its toxicity for the soil microbiota and its high persistence.

Page 61: Kul_BioremediasiS2

• To improve the effectiveness of these technologies, genetic manipulation of some organisms can be used.

• For example, tobacco plant was inoculated with bacterial genes encoding a nitroreductase enzyme.

• Genetically engineered tobacco plant showed a significantly faster degradation of TNT and an enhanced resistance to the toxic effect of the explosive.

Page 62: Kul_BioremediasiS2

• Regarding the economical aspects of these technologies, some studies suggest that when a phytoremediation process is used instead the conventional processes, – the costs may be reduced up to 50-60%. – However, the effectiveness of the process has to

be taken into account. – Although the price is significantly lower, – the time needed for the remediation may be

much longer.

Page 63: Kul_BioremediasiS2

• No specific regulatory standards have been developed for phytoremediation processes, so that installations must be approved on a case by case basis. There are several regulatory issues which will need to be addressed on most sites

• Several methods exist for the disposal of the harvested pollutant-rich crop after a phytoextraction process: Pre-treatment processes aim to reduce the volume of biomass to be treated, by strongly reducing its water content. Composting, compactation and pyrolisis are the most important ones. After the pre-treatments, the final disposal of vegetal material takes places.

Page 64: Kul_BioremediasiS2

• Although the only technique used in praxis is the incineration (in combination with filtering mechanisms to clean the gas effluent), other techniques exist, such as the direct disposal in a deponie.

• Other techniques also are being developed at a laboratory scale, such as the ashing or the liquid extraction techniques. However they still lack the required technology for its on-field application

Page 65: Kul_BioremediasiS2

• Phytoremediation is an emerging and promising technology which permits a low cost alternative to other remediation processes.

• However, the mechanisms behind the remediation process still need to be better understood, so that the best species-pollutant combination can be chosen.

• Other problems such as contaminant migration need to be focused in further studies to minimize the drawback of this new technology.

Page 66: Kul_BioremediasiS2

FITOREMEDIASI

Phyto-extraction

Rhizo-filtration

Phyto-stabilization

Rhizo-degradation

Phyto-degradation

Page 67: Kul_BioremediasiS2

FITOREMEDIASI

Phyto-volatilization

HydraulicControl

Vegetative Cover

Riparian Corridors

Page 68: Kul_BioremediasiS2
Page 69: Kul_BioremediasiS2

Kelebihan fitoremediasi

• Memanfaatkan cahaya matahari• Biaya murah• Mudah diterima masyarakat

• Bioremediasi EXSITU, mahal• Bioremediasi INSITU, lebih murah

Page 70: Kul_BioremediasiS2

Keterbatasan fitoremediasi

• Terbatas pada air dan tanah• Cara kerja lambat• Meracuni tnaman• Potensi racun masuk makanan• Racun sulit diketahui jenisnya• Hanya untuk lingkungan tanah dan air

Page 71: Kul_BioremediasiS2

Jenis tanaman fitoremediasi

• Bunga matahari/ Heliantus anuus : mendegradasi Uranium

• Populas trichocarpa, P.deltaritas Famili sacnaceae : mendegradasi TCE (Trichloroethylene)

• Najar graminae (tumbuhan air) : menyerap Co, Pb,Ni

• Vetiver grass (Vetiveria zizonaides), akar wangi : mendegradasi Pb, Zn

Page 72: Kul_BioremediasiS2

Tanaman air fitoremediasi

• Menyerap/mengakumulasi logam berat pada semua jaringan

• Kangkung air• Teratai• Eceng gondok

Page 73: Kul_BioremediasiS2

Bioremediasi dengan mikroba• Dengan 2 cara

– Oxidasi, bersamaan pertumbuhan mikroba– Reduksi, elektron akseptor

• Akumulasi logam pada dinding sel• Akumulasi logam dalam vakuola sel• Menghasilkan enzim pendegradasi logam,

eksoenzim diluar sel, endoenzim dalam sel

Page 74: Kul_BioremediasiS2

Mikroba bioremediasi logam• Bakteri mentransformasi Fe : Thiobacillus,

Leptothrix, Crenothrix,Sulfolobus, Gallionela• Bakteri mentransformasi Mn :• Arthrobacter, Leptothrix, Sphaerotillus• Hg : Pseudomonas, Bacillus

Page 75: Kul_BioremediasiS2

Phytoremediation

• ≈350 plant species naturally take up toxic materials– Sunflowers used to remove radioactive cesium

and strontium from Chrenobyl site– Water hyacinths used to remove arsenic from

water supplies in Bangladesh, India

Page 76: Kul_BioremediasiS2
Page 77: Kul_BioremediasiS2

Phytoremediation

• Drawbacks– Only surface soil (root zone) can be treated– Cleanup takes several years

Page 78: Kul_BioremediasiS2

Transgenic plants

Royal DemolitioneXplosive

Stimulates plant growth!

Gene from bacterium moved to plant genome

Page 79: Kul_BioremediasiS2

Careers in Bioremediation

• Outdoor inspection • Lab testing• Administration

Company employeeGovernment

EmployeeRegulatory oversight

Page 80: Kul_BioremediasiS2

Summary

• Many factors control biodegradability of a contaminant in the environment

• Before attempting to employ bioremediation technology, one needs to conduct a thorough characterization of the environment where the contaminant exists, including the microbiology, geochemistry, mineralogy, geophysics, and hydrology of the system