mac101_chap6

36
Advanced mathematics I: Calculus Chapter 6 Essential Calculus, James Stewart Department of Mathematics, FPT University Techniques of Integration  

Upload: chuc-nguyen

Post on 06-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 1/36

Advanced mathematics I: Calculus

Chapter 6

Essential Calculus, James StewartDepartment of Mathematics, FPT University

Techniques of Integration 

Page 2: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 2/36

Introduction

Topics will be covered:

• Trigonometric Integrals and Substitutions

• Partial Fractions

• Approximate Integration

• Improper Integral

Page 3: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 3/36

Trigonometric Integrals

Trigonometric integrals of sin x and cos x

• If m or n is odd then use substitution u = sin x or u =cos x, and the identity

• If both m and n are even then use half-angleidentities

dx x xnm

cossin

1cossin22 x x

2

2cos1cos,

2

2cos1sin

22 x x

 x x

Page 4: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 4/36

Trigonometric Integrals

Trigonometric integrals of sin mx and cos nx

Use identities:

dxnxmxdxnxmxdxnxmx coscos,sinsin,cossin

])cos()[cos(2

1coscos

])cos()[cos(

2

1sinsin

])sin()[sin(2

1cossin

 xnm xnmnxmx

 xnm xnmnxmx

 xnm xnmnxmx

Page 5: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 5/36

Trigonometric Integrals

Example

Calculate

(a)

(b)

(c)

dx x )2(sin 4

dx x x 52 cossin

dx x x 5cos2sin

Page 6: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 6/36

Trigonometric Integrals

Trigonometric substitution

Expression Substitution

 x = a tan(θ ) ( –π /2 < θ < π /2)

 x = a sin(θ ) ( –π/2 ≤ θ  ≤ π /2) or

 x = a cos(θ ) (0 ≤ θ  ≤ π) x = a / cos(θ ) (θ   [0,π /2)[π,3π /2))

22 xa

22 xa

22a x

Page 7: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 7/36

Trigonometric Integrals

Example

Let x = 2sin(θ ) 

4 ?)4(

2

2 / 32

x

 x

dx I 

)(cos8))(sin1(4)4( 32 / 3

22 / 32      x

     d dx )cos(2

C d d 

 I  )tan(4

1

)(cos4

1

)(cos8

)cos(223

    

  

  

    

θ  

 x2

24 x

24)tan(

2)sin(

 x

 x x

     C 

 x

 x I 

244

1

Page 8: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 8/36

Trigonometric Integrals

Example

Calculate

(a)

(b)

dx x x 4

1

22

dx x 1

1

2

Page 9: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 9/36

Partial fractions

Theorem

• 

If the function f(x) has the form

then ∫f (x )dx  can be computed using partial fractions .

n

n

m

m

n

m

 xa xaa

 xb xbb

 xQ

 xP x f 

...

...

)(

)()(

10

10

If m<n then

k k 

n

m

cbx x

 B Ax

a x

 A

 xQ

 xP

)()()(

)(2

•  If m≥n then 

with degree R < degree T.

)(

)()()(

)(

 xT 

 x R xS xQ

 xP

n

m

Page 10: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 10/36

Partial fractions

Theorem

To find partial fractions for P m (x )/ Q n (x ) with m <n: 

• Factorize Q n (x ) via (x  –a )k and (x 2+bx +c )k  

• Each factor (x  –

a )

corresponds to

• Each factor (x 2+bx +c )k corresponds to

a x

 A

a x

 A

a x

 A

)(...

)()(2

21

k k 

cbx x

 B x A

cbx x

 B x A

cbx x

 B x A

)(...

)()(222

22

2

11

Page 11: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 11/36

Partial fractions

Example

?)1( 2

x x 

dx I 

22 )1(1)1(

1

A

x x 

x x x B x  )1()1(1 2

11 C x 

C x 

x x 

dx x x x 

 

  

 

1

1|1|ln||ln

)1( 1111 2

Cx x x B x A )1()1(1 2

10 Ax 

12 B x 

Page 12: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 12/36

Partial fractions

Example

?)1( 2 x x

dx I 

1)1(

12

221

2

x

 B x A

 x

 A

 x x

10 1 A x

00 B x

C  x x x

 xdx

 x

dx I 

|1|ln

2

1||ln

1

2

2

)()1(1 22

2

1 B x A x x A

)()1(1 22

2  B x A x x 22 B x A x

12 A

Page 13: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 13/36

Approximate integration

Left endpoint Method

b

a

n x f  x f  x f  xdx x f  )](...)()([)( 110

Page 14: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 14/36

Approximate integration

Right endpoint Method

b

a

n x f  x f  x f  xdx x f  )](...)()([)(21

Page 15: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 15/36

Approximate integration

Midpoint Method

 f ( x)

 ∆x 

1 x 2 x3 x

n x

)](...)()([)( 21 n

b

a

 x f  x f  x f  xdx x f 

Page 16: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 16/36

Approximate integration

Trapezoidal Method

)]()([2

...)]()([2

)( 110 nn

b

a

 x f  x f  x

 x f  x f  x

dx x f 

)]()(2...)(2)([2

110 nn x f  x f  x f  x f  x

Page 17: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 17/36

Approximate integration

Simpson Method

)]()(4)([3

...)]()(4)([3

)( 12210 nnn

b

a

 x f  x f  x f  x x f  x f  x f  xdx x f 

)]()(4...)(2)(4)([3

1210 nn x f  x f  x f  x f  x f  x

Page 18: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 18/36

Approximate integration

Example

2

1(1/ ) x dxApproximate the integral

with n = 8, using:

a. Left/Right endpoints

b. Midpoints

c. Trapezoidal method

d. Simpson method

Page 19: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 19/36

Approximate integration

Estimate error for Midpoint and Trapezoidal method

• Suppose | f’’ (x ) | ≤ K for a  ≤ x  ≤ b .

• If E T and E M are the errors in the Trapezoidal andMidpoint Rules, then

3 3

2 2

( ) ( )and

12 24T M 

K b a K b a E E 

n n

i i i

Page 20: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 20/36

Approximate integration

Estimate error for Simpson method

• Suppose | f(4)(x) | ≤ K for a  ≤ x  ≤ b .

• If E S  is the error in the Simpson method, then

5

4( )180

s K b a E n

A i i i

Page 21: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 21/36

Approximate integration

Example

How large should we take n in order to guarantee

that the Trapezoidal, Midpoint Rule, Simpson rule

approximations for

are accurate to within 0.0001?

2

1 (1/ ) x dx

A i i i

Page 22: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 22/36

Approximate integration

|  f’’ ( x ) | ≤ 2 for 1 ≤ x  ≤ 2 

Accuracy to within 0.0001 means that error < 0.0001Trapezoidal: Choose smallest n so that:

 n = 41

Midpoint:

 n = 30

Simpson:

3

2

2(1)0.0001

12n

3

2

2(1)

0.000124n (4)

5

24( ) 24 f x

 x

5

4

24(1)0.0001

180n    n = 7

I i l

Page 23: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 23/36

Improper integrals

Definition (Improper Integral of Type 1)

Suppose exists for any N ≥ a 

The improper integral of f (x ) with x from a  to +∞ is: 

If this limit exists and is finite, we say that the integration

converges, otherwise it diverges.

dx x f  )(

a

dx x f  )( ,)(lim

 N 

a N 

dx x f 

I i t l

Page 24: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 24/36

Improper integrals

Example

Let a > 0. Investigate the convergence of the improper integrals:

aaax

dx

 x

dx

 x

dx,,

23 / 1

Theorem

converges if p>1 and diverges if p 1.

a

 p x

dx

I i t l

Page 25: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 25/36

Improper integrals

Definition

Suppose exists for any –N ≤ a 

Improper integral of f (x ) with x from -∞ to a is:

If this limit exists and is finite, we say that integrationconverges, otherwise, it diverges.

a

 N 

dx x f  )(

a

dx x f  )(

a

 N  N 

dx x f  )(lim

I i t l

Page 26: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 26/36

Improper integrals

Definition

Suppose that and exist for any N > 0.

The improper integral of f (x ) with x from -∞ to +∞ is: 

In the case both limits above exist, we say that integration

converges, otherwise, it diverges.

0

)(N 

dx x f 

:)( dx x f 

dx x f 

0

)(

N M 

dx x f dx x f 

0

0

)(lim)(lim

I i t l

Page 27: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 27/36

Improper integrals

Example

Investigate the convergence of the improper integrals:

(a)

(b)

0

23

dxe xx

dxe xx3

2

I i t l

Page 28: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 28/36

Improper integrals

Definition (Improper Integral of type II )

Let f (x ) be a function such that:

• f(x) is unbounded at a,

• exists for all ε  > 0.

The improper integral of f (x ) over [a, b] is the followinglimit:

If this limit exists and is finite, we say that integrationconverges, otherwise, it diverges.

dx x f 

  

)(

b

at 

b

a

dx x f dx x f  )(lim)(

I i t l

Page 29: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 29/36

Improper integrals

Definition

Let f (x ) be a function such that:

• f(x) is unbounded at b,

• exists for all ε  > 0

The improper integral of f (x ) over [a, b] is the followinglimit:

If this limit exists and is finite, we say that the integralconverges, otherwise it diverges.

  b 

dx x f  )(

abt 

b

a

dx x f dx x f  )(lim)(

Improper integrals

Page 30: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 30/36

Improper integrals

Example

Let b> 2. Investigate the convergence of the improper integrals:

bbb

 x

dx

 x

dx

 x

dx

22

2

2

3 / 12

,)2(

,)2(

Theorem

diverges if p 1 and converges if p<1.

b

a

 p

a x

dx

)(

Improper integrals

Page 31: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 31/36

Improper integrals

Definition

Let f (x ) be a function such that:

• f(x) is unbounded at c  [a , b ], 

• and exist for all ε  > 0.

The improper integral of f (x ) over [a, b] is:

If this limit exists and is finite, we say that integralconverges, otherwise it diverges.

  c 

dx x f  )(

dx x f 

  

)(

a

b

t ct ct 

b

a

dx x f dx x f dx x f  )(lim)(lim)(

Improper integrals

Page 32: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 32/36

Improper integrals

Example

Investigate the convergence of the improper integral:

3

01 x

dx

Improper integrals

Page 33: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 33/36

Improper integrals

Comparison Theorem

Suppose that f (x ), g (x ) are integrable functions over (a ,  ).If

f (x )≥g (x )≥0

for any x   (a , ), we have:

• If converges then converges,

• If diverges then diverges.

a

dx x f  )(

a

dx xg )(

adx x f  )(

adx xg )(

Note: A similar theorem is true for Type II integrals

Improper integrals

Page 34: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 34/36

Improper integrals

Example

1

2|)cos(|

x dx x I Does converge?

We have,

and converges

→ I converges.

22

1|)cos(|

0 x x 

1

2x 

dx 

Improper integrals

Page 35: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 35/36

Improper integrals

Example

Investigate the convergence of the improper integrals

(a)

(b)

0

2

dxex

0

1dx

 x

ex

Summary

Page 36: MAC101_Chap6

8/3/2019 MAC101_Chap6

http://slidepdf.com/reader/full/mac101chap6 36/36

Summary

We have studied:

-Trigonometric Integrals and Substitutions.-Partial Fractions-Approximate Integration-Improper Integral

Homework:

6.2: 14, 19, 33, 34, 41, 49, 54

6.3: 5, 23, 32, 34, 416.5: 5, 7, 18, 316.6: 2, 5, 7, 13, 25, 29, 41, 43, 45, 48,