pvmaterials

Upload: george-mavromatidis

Post on 03-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 PVmaterials

    1/37

    Session 1 Mon 10 Oct 2-5 pm

    Prof J. Nelson The solar resource and solar energyconversion

    Prof J. Nelson PV systems

    Dr N. Ekins-Daukes Silicon solar cell technology

    Session 2 Mon 17 Oct 25 pm

    Dr N. Ekins DaukesProf J. Nelson

    Concentrator Photovoltaics andConcentrated solar thermal power

    Session 3 Mon 24 Oct 25 pm

    Prof J. Nelson Photovoltaic materialsThin film PV materials

    Organic photovoltaic materials

    SEF01: Solar Energy Conversion (2011-12)

    Objectives:

    To understand the principles of solar photovoltaic energy conversion

    To appreciate the role of materials in PV technology and the status of

    established (silicon, then film) and emerging (organic) photovoltaic technologies

    To be able to solve simple problems in the design of PV systems or applications

    of PV

  • 7/29/2019 PVmaterials

    2/37

    Photovoltaic materials and future approaches:Outline

    Strategies to reduce the cost per peak Watt

    Cheaper (thin film) photovoltaic materials

    Organic photovoltaic materials

    Limits to power conversion efficiency

  • 7/29/2019 PVmaterials

    3/37

    THE FUTURE FOR PV

    0.00

    2000.00

    4000.00

    6000.00

    8000.00

    10000.00

    12000.00

    14000.00

    16000.00

    1993

    1994

    1995

    1996

    1997

    1998

    1999

    2000

    2001

    2002

    2003

    2004

    2005

    2006

    2007

    2008

    Installedcapacity/MWp

    grid connected

    off grid

    Data: www.iea-pvps.org

  • 7/29/2019 PVmaterials

    4/37

    PERL cell

    Status of Silicon PV

    Maximum lab cell efficiency 24.9%

    Module efficiency >15%

    > 20 GWp capacity installed globally. Dominated by from polycrystalline andmonocrystalline silicon modules.

    Module price ~ 3.47 $/Wp (US)or 3.09 Eu/Wp (http://www.solarbuzz.com) Cost of electricity (US) ~ 0.22 $/kWh (Commercial), 0.32 $/kWh (Residential)

  • 7/29/2019 PVmaterials

    5/37

    Strategies to cost reduction

    Crystalline silicon solar cells are expensive

    Use lessphotovoltaic

    material?

    Use cheaperphotovoltaic

    material?

    More work

    per photon?

  • 7/29/2019 PVmaterials

    6/37

    Cheaper photovoltaic materials

  • 7/29/2019 PVmaterials

    7/37

    PV materials

    1 2 310

    4

    105

    106

    107

    108

    109

    Absorption

    coefficient/m

    -1

    Photon energy / eV

    Silicon

    GaAs

    aSi

    absCIS

    P3HT

    Material Band gap

    (eV)

    Max Jsc

    (mA cm-2

    )

    Type of gap Crystal size

    Crystalline silicon

    (c-Si)

    1.1 42 indirect >10-3

    m

    Crystalline GaAs 1.4 32 direct >10-3

    m

    Polycrystalline Si

    (p-Si)

    1.1 42 indirect 10-4

    m

    Amorphous Si

    (a-Si)

    ~1.7 ~ 23 ~ direct amorphous

    CuInGaSe2 > 1.0 < 45 direct 10-6

    m

    Cd Te 1.4 42 direct 10-6

    m

    Polymer /

    fullerene

    1.6 24 Direct

    (finite band

    width)

    amorphous

  • 7/29/2019 PVmaterials

    8/37

  • 7/29/2019 PVmaterials

    9/37

    PV materials

    Material Band

    gap(eV)

    Theoretical

    Jsc (mAcm-2)

    Grain

    size(um)

    Voc (V) Jsc (mA

    /cm2

    )

    FF (%) Efficiency

    (%)

    Crystalline silicon

    (c-Si)

    1.1 42 >104 0.696 42.0 83.6 24.9

    Crystalline GaAs 1.4 32 >104 1.022 28.2 87.1 25.1

    Polycrystalline Si

    (p-Si)

    1.1 42 10-100 0.628 36.2 78.5 19.8

    Amorphous Si

    (a-Si)

    ~1.7 ~ 23 Amor-

    phous

    0.887 19.4 74.1 12.7

    CuInGaSe2 > 1.0 < 45 1 0.669 35.7 77.0 18.4

    Cd Te 1.4 42 1 0.848 25.9 74.5 16.4

    Organic (polymer /

    fullerene)

    1.6 24 Amor-

    phous

    ~0.75 ~15 ~70 ~8

  • 7/29/2019 PVmaterials

    10/37

  • 7/29/2019 PVmaterials

    11/37

    Photovoltaic materials and future approaches:Outline

    Strategies to reduce the cost per peak Watt

    Cheaper (thin film) photovoltaic materials

    Organic photovoltaic materials

    Limits to power conversion efficiency

  • 7/29/2019 PVmaterials

    12/37

    Single Semiconductor Junction.

    Amorphous / micro-crystalline material

    Low materials usage

    Low embedded energy

    Low cost

    Large unit size

    - Efficiency

    Thin film (2nd Generation) Photovoltaics

    a-Si,

    Richmond, U.K.

    Dye-Sensitised Solar Cell 6%

    Polymer, 4%10% CdTe, $0.98/W

    6% a-Si, 6m2

  • 7/29/2019 PVmaterials

    13/37

    Thin-film Silicon

    Direct deposition of Si onto

    glass from SiH4

    Typically 6% efficient

    module

    (14.7% research lab)

    Low cost of materials

    Large manufacturing Unit

    Low embedded energy

    Efficiency

    6% a-c-Si, Applied materials ~ 6m2

    4% semi-transparent Si, Kaneka

  • 7/29/2019 PVmaterials

    14/37

    Thin-film Silicon

    Direct deposition of Si onto

    glass from SiH4

    Typically 10% efficient

    module

    (14.7% research lab)

    Low cost of materials

    Large manufacturing unit

    Low embedded energy

    X Growth rate (30nm/min)(PECVD)

    ZnO

    Micromorph

    tandem

    a-Si

    Micromorph tandem

    E.g. Oerlikon Solar

  • 7/29/2019 PVmaterials

    15/37

    Basic micromorph process steps

    Clean glass Deposit TCO Laser scribe :1

    Semiconductor

    depositionLaser scribe :2Rear TCO

    Laser scribe 3Contact, Encapsulate,

    Test

    Oerlikon production system

  • 7/29/2019 PVmaterials

    16/37

    Micro-morph tandem module performance

    Initial module efficiency: 12.2%

    Module efficiency after light soaking: 10.7%

    U.Kroll et al., Thin film silicon PV: from R&D to

    large area production equipment. Oerlikon Solar

    Lab SA, Proc 37th IEEE Photovoltaics Specialists

    Conference 2011.

  • 7/29/2019 PVmaterials

    17/37

    CdTe Thin-Film Modules

    Glass laminateEthyl vinyl acetate

    Aluminium

    Nickel

    CdTe

    CdS

    FTO

    Glass Superstrate

    3m

    100nm

    CdS & CdTe films grown by

    vapour transport depositionExtremely fast deposition

    rate >10m/min

    10% module efficiency

    (16.9% research lab)

    Low cost of materials Large manufacturing unit

    Low embedded energy

    Abundance of Te

    E.g. First Solar

  • 7/29/2019 PVmaterials

    18/37

    Basic CdTe process steps

  • 7/29/2019 PVmaterials

    19/37

    Photovoltaic materials and future approaches:Outline

    Strategies to reduce the cost per peak Watt

    Cheaper (thin film) photovoltaic materials

    Organic photovoltaic materials

    Limits to power conversion efficiency

  • 7/29/2019 PVmaterials

    20/37

    Molecular photovoltaic materials

  • 7/29/2019 PVmaterials

    21/37

    The goal

    contacts active layer

    Current andvoltage output

    flexible substrate

    barrier coatingLight

    contacts active layer

    Current andvoltage output

    flexible substrate

    barrier coatingLight

    contacts active layer

    Current andvoltage output

    flexible substrate

    barrier coatingLight

    encapsulant

    metal

    deposition

    solution

    deposition

    su

    bs

    tra

    te

    Target cost < 0.5 $/Wp

    Rapid growth in production

    capacity possible

    http://www.google.co.uk/imgres?imgurl=http://www.envirogadget.com/wp-content/uploads/2009/11/Neuber-Energy-Sun-Bag.jpg&imgrefurl=http://www.solarfeeds.com/greentech-media/11455-konarka-lands-20m-for-organic-solar-cells&usg=__GevMJy4BmxRbnpNuiAH81xFJKzY=&h=500&w=728&sz=87&hl=en&start=1&zoom=1&um=1&itbs=1&tbnid=dSFvoEkUplr0zM:&tbnh=97&tbnw=141&prev=/images%3Fq%3Dorganic%2Bsolar%2Bbag%26um%3D1%26hl%3Den%26sa%3DN%26rlz%3D1T4GGLR_enGB270GB271%26tbs%3Disch:1
  • 7/29/2019 PVmaterials

    22/37

    conjugated

    polymer

    1 nm

    Molecular electronic materials

    Easily processable e.g. fromsolution

    Abundant, non-toxic

    materials

    Tune properties via chemicaldesign

    Excited states are localised:limited charge and excitonmobility

    dye

    conjugated molecule1nm

    Konarka Technologies

  • 7/29/2019 PVmaterials

    23/37

    EB ~ 0.01 eV

    Spontaneous charge pair generation

    -

    EB ~ 0. 1- 0.5 eV

    Charges hard to dissociate

    +

    Inorganic semiconductor

    +-

    Molecular semiconductor

    The main issue: charge separation

    Cannot copy inorganic PV device structures!

    n p

    active region

    dead region

  • 7/29/2019 PVmaterials

    24/37

    Donor-acceptor solar energy converters

    Electron

    acceptor

    Electron

    donorC60 Conjugated

    polymer

    Donor acceptor blend

    active region

    EB can be supplied by the free energy differencebetween donor and acceptor species

  • 7/29/2019 PVmaterials

    25/37

    Bulk heterojunction device structure

    Donor-acceptor bulk heterojunction devices

    Cathode

    Donor-Acceptor blend

    Anode

    Substrate

    h+e-

    Active layer can be

    100s of nm - limitedby charge diffusion

    length

    Domain size ca. 10 nm. ~exciton diffusion length

    Blend layer deposited from solution

  • 7/29/2019 PVmaterials

    26/37

    Key steps in photocurrent generation

    1

    1. Photon absorption2

    2. Exciton diffusion

    -+

    3

    3. Exciton dissociationgeminate charge pair

    -

    +4

    4. Geminate charge pair separation

    5

    5

    5. Charge transport to contacts

    Current generation

    Exciton decay

    Other excited statese.g. triplets

    Geminate charge pair

    recombination

    Non-geminate charge

    pair recombination

    fl h l f

  • 7/29/2019 PVmaterials

    27/37

    -

    +

    Parameters influencing photovoltaic performance

    Absorption

    spectra

    Excitondiffusion

    lengths

    Domain size

    Order in molecular packing

    Domain connectivity

    microstructure

    absorption

    edge

    energy levels

    donor

    acceptor(PCBM)

    HOMO

    HOMO

    LUMO

    LUMO

    Eg DECS

    DEe

    open circuit

    voltage

    charge

    separation

  • 7/29/2019 PVmaterials

    28/37

    0.0 0.2 0.4 0.6 0.8-60

    -50

    -40

    -30

    -20

    -10

    0

    P3HT:PCBM solar cell

    = 4 %

    High efficiency silicon cell

    = 24 %

    Cur

    rentdensity/mAcm-2

    Voltage / V

    Role of energy levels

    donor

    acceptor

    (PCBM)

    HOMO

    HOMO

    LUMO

    LUMO

    EgD

    ECS

    DEe

    Donor HOMO- acceptor LUMO

    gap controls maximum Voc

    Donor optical gap

    controls Jsc EFp

    eVoc

    EFn

    S f h A

  • 7/29/2019 PVmaterials

    29/37

    State of the Art

    Liangetal.,

    Adv.Mater.22(2010)

    electron

    donorelectron

    acceptor

    HOMO

    HOMO

    LUMO

    LUMO

    Eg DECS

    DEe

    - 5.15 eV

    - 3.31 eV

    Combination of strategies (lower Eg and

    deeper HOMO energy) leads to power

    conversion efficiency of over 7% (now

    8%)

    S f h A

  • 7/29/2019 PVmaterials

    30/37

    State of the Art

    Lifetimes of several years demonstrated with low to moderate

    permeability barriers (WVTR of 10-5 10-2 g/m2/day).

    Hauc

    he

    ta

    l.,

    So

    l.Energy

    Ma

    ter.

    So

    l.Ce

    lls92

    ,727

    (2008)

    Kime

    tal.

    ,App

    l.Phys.L

    ett

    .94

    ,16

    6308(2009)

    Food packaging ALD deposited alumina / organic layer

    S f h A

  • 7/29/2019 PVmaterials

    31/37

    State of the Art

    Cells combined into modules todeliver useful dc voltages

    First consumer products being

    tested on market

    0.1 m2 1.3 Wp0.5 m2 9 Wp

    Vmpp ~ 8 V

    Impp = 0.16 1 A

    P j d M k

  • 7/29/2019 PVmaterials

    32/37

    Projected Markets

    When Efficiency

    (module)

    Lifetime Cost

    (system)

    Capacity

    Consumer

    electronics

    2010-2013 1-3% 1-2 years 8-12 $/W 1 GWp /year

    Mobile power 2012-2015 3-4% 1-3 years 2-4 $/W 1.5 GWp /year

    Small scale BIPV 2015-2018 4-6% 3-5 years 1 $/W 5 GWp /year

    Power

    generation

    2018-2025 6-9% 5-7 years 0.5 $/W 60 GWp /year

    Nie

    lsene

    ta

    l.,

    So

    l.Energy

    Ma

    ter.

    So

    l.Ce

    lls94

    ,155

    3(2010)

    Also need to identify markets distinct from those of competing thin film PV

    R h l

  • 7/29/2019 PVmaterials

    33/37

    Research goals

    Efficiency:

    materials for optimised light absorption and voltage generation

    understanding charge pair separation

    control of film microstructure

    high mobility materials

    selective electrodes

    Lifetime:

    materials with improved photostability

    control of film microstructure

    stable electrodes

    Cost:

    scalable and fast fabrication processes

    cheap electrodes

    stable photoactive materials and electrodes

    Research programme at Imperial College London

  • 7/29/2019 PVmaterials

    34/37

    Research programme at Imperial College London

    contacts active layer

    Current andvoltage output

    flexible substrate

    barrier coatingLight

    contacts active layer

    Current andvoltage output

    flexible substrate

    barrier coatingLight

    contacts active layer

    Current andvoltage output

    flexible substrate

    barrier coatingLight

    Design and synthesise

    materials with optimised

    energy levels and self

    organising properties

    Study the microstructure

    of photovoltaic thin films

    Study the photophysics of

    thin films

    Study the electrical

    properties of thin films

    All as a function of chemical

    structure and processing

    Optimise PV device

    performance and structure

    Scale up fabrication

    process

    Develop models for

    material and device design

    Research programme at Imperial College London

    http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65101768.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__2dWm6wcIdP3utKdigYuWGIVt5vI=&h=224&w=200&sz=38&hl=en&start=1&um=1&itbs=1&tbnid=JCY5pF0l6E2p6M:&tbnh=108&tbnw=96&prev=/images%3Fq%3Dmartin%2Bheeney%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1
  • 7/29/2019 PVmaterials

    35/37

    Research programme at Imperial College London

    contacts active layer

    Current andvoltage output

    flexible substrate

    barrier coatingLight

    contacts active layer

    Current andvoltage output

    flexible substrate

    barrier coatingLight

    contacts active layer

    Current andvoltage output

    flexible substrate

    barrier coatingLight

    Design and synthesise

    materials with optimised

    energy levels and self

    organising properties

    Study the microstructure

    of photovoltaic thin films

    Study the photophysics of

    thin films

    Study the electrical

    properties of thin films

    All as a function of chemical

    structure and processing

    Optimise PV device

    performance and structure

    Scale up fabrication

    process

    Develop models for

    material and device design

    Research programme at Imperial College London

    http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65101768.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__2dWm6wcIdP3utKdigYuWGIVt5vI=&h=224&w=200&sz=38&hl=en&start=1&um=1&itbs=1&tbnid=JCY5pF0l6E2p6M:&tbnh=108&tbnw=96&prev=/images%3Fq%3Dmartin%2Bheeney%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64903719.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__uZeBmvmJ6SLBnQHtgjGTUuYBtSk=&h=1644&w=1524&sz=469&hl=en&start=1&um=1&itbs=1&tbnid=w_WtZei5ma8ehM:&tbnh=150&tbnw=139&prev=/images%3Fq%3Dnatalie%2Bstingelin%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64903719.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__uZeBmvmJ6SLBnQHtgjGTUuYBtSk=&h=1644&w=1524&sz=469&hl=en&start=1&um=1&itbs=1&tbnid=w_WtZei5ma8ehM:&tbnh=150&tbnw=139&prev=/images%3Fq%3Dnatalie%2Bstingelin%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64903719.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__uZeBmvmJ6SLBnQHtgjGTUuYBtSk=&h=1644&w=1524&sz=469&hl=en&start=1&um=1&itbs=1&tbnid=w_WtZei5ma8ehM:&tbnh=150&tbnw=139&prev=/images%3Fq%3Dnatalie%2Bstingelin%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65181736.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/0FDF9D27EF7C43D0E0440003BACD13A5&usg=__dp4rzytQKLNUEZUzlJzuVMIN_Cg=&h=150&w=100&sz=42&hl=en&start=5&um=1&itbs=1&tbnid=FfRBXr3kmdNxnM:&tbnh=96&tbnw=64&prev=/images%3Fq%3Dsaif%2Bhaque%2Bimperial%26um%3D1%26hl%3Den%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65181736.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/0FDF9D27EF7C43D0E0440003BACD13A5&usg=__dp4rzytQKLNUEZUzlJzuVMIN_Cg=&h=150&w=100&sz=42&hl=en&start=5&um=1&itbs=1&tbnid=FfRBXr3kmdNxnM:&tbnh=96&tbnw=64&prev=/images%3Fq%3Dsaif%2Bhaque%2Bimperial%26um%3D1%26hl%3Den%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64903719.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__uZeBmvmJ6SLBnQHtgjGTUuYBtSk=&h=1644&w=1524&sz=469&hl=en&start=1&um=1&itbs=1&tbnid=w_WtZei5ma8ehM:&tbnh=150&tbnw=139&prev=/images%3Fq%3Dnatalie%2Bstingelin%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65181736.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/0FDF9D27EF7C43D0E0440003BACD13A5&usg=__dp4rzytQKLNUEZUzlJzuVMIN_Cg=&h=150&w=100&sz=42&hl=en&start=5&um=1&itbs=1&tbnid=FfRBXr3kmdNxnM:&tbnh=96&tbnw=64&prev=/images%3Fq%3Dsaif%2Bhaque%2Bimperial%26um%3D1%26hl%3Den%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www.rsc.org/images/Durrant120_tcm18-150745.jpg&imgrefurl=http://www.rsc.org/ScienceAndTechnology/Awards/EnvironmentPrize/2009winner.asp&usg=__UYI6sBFi8K-syQexzVd0_9RlXQE=&h=113&w=120&sz=9&hl=en&start=3&um=1&itbs=1&tbnid=Jw082bqQeXbZMM:&tbnh=83&tbnw=88&prev=/images%3Fq%3Djames%2Bdurrant%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64903719.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__uZeBmvmJ6SLBnQHtgjGTUuYBtSk=&h=1644&w=1524&sz=469&hl=en&start=1&um=1&itbs=1&tbnid=w_WtZei5ma8ehM:&tbnh=150&tbnw=139&prev=/images%3Fq%3Dnatalie%2Bstingelin%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65101768.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__2dWm6wcIdP3utKdigYuWGIVt5vI=&h=224&w=200&sz=38&hl=en&start=1&um=1&itbs=1&tbnid=JCY5pF0l6E2p6M:&tbnh=108&tbnw=96&prev=/images%3Fq%3Dmartin%2Bheeney%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64903715.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__9hXybRjhpK0NgdlBmoF5PVhhOrw=&h=323&w=444&sz=63&hl=en&start=7&um=1&itbs=1&tbnid=2zqdkVA4CAkfmM:&tbnh=92&tbnw=127&prev=/images%3Fq%3Dji-seon%2Bkim%2Bimperial%26um%3D1%26hl%3Den%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www.rsc.org/images/McCulloch120_tcm18-151465.jpg&imgrefurl=http://www.rsc.org/ScienceAndTechnology/Awards/CreativityinIndustryPrize/2009winner.asp&usg=__cz4tejqebZAyljI0xeHfX6tbDrk=&h=147&w=120&sz=15&hl=en&start=12&um=1&itbs=1&tbnid=4d3ayba0wqdOBM:&tbnh=95&tbnw=78&prev=/images%3Fq%3Diain%2Bmcculloch%26um%3D1%26hl%3Den%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65101768.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__2dWm6wcIdP3utKdigYuWGIVt5vI=&h=224&w=200&sz=38&hl=en&start=1&um=1&itbs=1&tbnid=JCY5pF0l6E2p6M:&tbnh=108&tbnw=96&prev=/images%3Fq%3Dmartin%2Bheeney%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1
  • 7/29/2019 PVmaterials

    36/37

    Research programme at Imperial College London

    Design and synthesise

    materials with optimised

    energy levels and self

    organising properties

    Study the microstructure

    of photovoltaic thin films

    Study the photophysics of

    thin films

    Study the electrical

    properties of thin films

    All as a function of chemical

    structure and processing

    Optimise PV device

    performance and structure

    Scale up fabrication

    process

    Develop models for

    material and device design

    3 Departments

    > 10 academics

    > 50 researchers

    Several m grant funding

    National, international and

    industrial collaborations

    Summary

    http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65101768.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__2dWm6wcIdP3utKdigYuWGIVt5vI=&h=224&w=200&sz=38&hl=en&start=1&um=1&itbs=1&tbnid=JCY5pF0l6E2p6M:&tbnh=108&tbnw=96&prev=/images%3Fq%3Dmartin%2Bheeney%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65181736.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/0FDF9D27EF7C43D0E0440003BACD13A5&usg=__dp4rzytQKLNUEZUzlJzuVMIN_Cg=&h=150&w=100&sz=42&hl=en&start=5&um=1&itbs=1&tbnid=FfRBXr3kmdNxnM:&tbnh=96&tbnw=64&prev=/images%3Fq%3Dsaif%2Bhaque%2Bimperial%26um%3D1%26hl%3Den%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65181736.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/0FDF9D27EF7C43D0E0440003BACD13A5&usg=__dp4rzytQKLNUEZUzlJzuVMIN_Cg=&h=150&w=100&sz=42&hl=en&start=5&um=1&itbs=1&tbnid=FfRBXr3kmdNxnM:&tbnh=96&tbnw=64&prev=/images%3Fq%3Dsaif%2Bhaque%2Bimperial%26um%3D1%26hl%3Den%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64903719.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__uZeBmvmJ6SLBnQHtgjGTUuYBtSk=&h=1644&w=1524&sz=469&hl=en&start=1&um=1&itbs=1&tbnid=w_WtZei5ma8ehM:&tbnh=150&tbnw=139&prev=/images%3Fq%3Dnatalie%2Bstingelin%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64565697.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/6DCC9BECCF784A10E0440003BACD17D6&usg=__983ccxtTkDrXaW3hMzz_WbhhJ-4=&h=361&w=253&sz=26&hl=en&start=1&um=1&itbs=1&tbnid=8MrvQUzXt5vlxM:&tbnh=121&tbnw=85&prev=/images%3Fq%3Ddonal%2Bbradley%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65181736.JPG&imgrefurl=http://www3.imperial.ac.uk/portal/page/portallive/0FDF9D27EF7C43D0E0440003BACD13A5&usg=__dp4rzytQKLNUEZUzlJzuVMIN_Cg=&h=150&w=100&sz=42&hl=en&start=5&um=1&itbs=1&tbnid=FfRBXr3kmdNxnM:&tbnh=96&tbnw=64&prev=/images%3Fq%3Dsaif%2Bhaque%2Bimperial%26um%3D1%26hl%3Den%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www.rsc.org/images/Durrant120_tcm18-150745.jpg&imgrefurl=http://www.rsc.org/ScienceAndTechnology/Awards/EnvironmentPrize/2009winner.asp&usg=__UYI6sBFi8K-syQexzVd0_9RlXQE=&h=113&w=120&sz=9&hl=en&start=3&um=1&itbs=1&tbnid=Jw082bqQeXbZMM:&tbnh=83&tbnw=88&prev=/images%3Fq%3Djames%2Bdurrant%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64903719.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__uZeBmvmJ6SLBnQHtgjGTUuYBtSk=&h=1644&w=1524&sz=469&hl=en&start=1&um=1&itbs=1&tbnid=w_WtZei5ma8ehM:&tbnh=150&tbnw=139&prev=/images%3Fq%3Dnatalie%2Bstingelin%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/65101768.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__2dWm6wcIdP3utKdigYuWGIVt5vI=&h=224&w=200&sz=38&hl=en&start=1&um=1&itbs=1&tbnid=JCY5pF0l6E2p6M:&tbnh=108&tbnw=96&prev=/images%3Fq%3Dmartin%2Bheeney%2Bimperial%26um%3D1%26hl%3Den%26sa%3DG%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www3.imperial.ac.uk/pls/portallive/docs/1/64903715.JPG&imgrefurl=http://www3.imperial.ac.uk/solar/people&usg=__9hXybRjhpK0NgdlBmoF5PVhhOrw=&h=323&w=444&sz=63&hl=en&start=7&um=1&itbs=1&tbnid=2zqdkVA4CAkfmM:&tbnh=92&tbnw=127&prev=/images%3Fq%3Dji-seon%2Bkim%2Bimperial%26um%3D1%26hl%3Den%26tbs%3Disch:1http://images.google.co.uk/imgres?imgurl=http://www.rsc.org/images/McCulloch120_tcm18-151465.jpg&imgrefurl=http://www.rsc.org/ScienceAndTechnology/Awards/CreativityinIndustryPrize/2009winner.asp&usg=__cz4tejqebZAyljI0xeHfX6tbDrk=&h=147&w=120&sz=15&hl=en&start=12&um=1&itbs=1&tbnid=4d3ayba0wqdOBM:&tbnh=95&tbnw=78&prev=/images%3Fq%3Diain%2Bmcculloch%26um%3D1%26hl%3Den%26tbs%3Disch:1
  • 7/29/2019 PVmaterials

    37/37

    Summary

    The cost per Watt of PV electricity can be reduced by:

    Reducing the cost of PV material using thin film materials Increasing the amount of work per photon

    Reducing the amount of PV material per photon harvested

    Inorganic thin films are amorphous or microcrystalline materials that can be

    deposited in fast processes e.g. from vapour phase Leading options are amorphous Si, microcrystalline Si, CdTe and

    CuInGaSe2

    a-Si / micro-Si tandem structures offer 10% module efficiency but arelimited by slow growth

    CdTe offers rapid growth but is potentially limited by Te availability

    Organic thin films offer rapid and low cost production by printing or coating fromsolution