redch2

Upload: leelapeq

Post on 02-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 redch2

    1/11

    Contents

    2 Limits and Continuity 35

    2.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    2.2 Numerical Introduction to Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

  • 8/10/2019 redch2

    2/11

    2 CONTENTS

  • 8/10/2019 redch2

    3/11

    Chapter 2

    Limits and Continuity

    2.1 Limits

    1. Define f : R Rby the rule f(x) = 101 for every x in the domain off. Find the following limits ifthey exist:

    (a) limx101

    f(x) (b) limx100

    f(x)

    (c) limx20

    f(x)101f(x) (d) limx1

    [f(x)]2 2f(x)

    2. Letg : R Rbe defined by the ruleg(x) =x2 4 for all x in the domain ofg andL : R Rbe definedby the rule L(x) = 2x

    1 for all x in the domain ofL. Find the following limits:

    (a) limx2

    g(x) (b) limx2

    g(x)

    (c) limx3

    g(x) L(x) (d) limx1

    [g(x) L(x)]

    (e) limx1/2

    g(x)L(x)

    (f) limx1/2

    g(x)L(x)

    (g) limx2

    [g(x) g(2)] (h) limx1

    [g(x) g(L(0))]

    3. Evaluate the following limits:

    (a) limy

    3|y| (b) lim

    w

    2|w|

    (c) limt3

    |t 2| (d) limy61

    |y||y|

    (e) limx0

    (|x| | 3|) (f) limxa(|x| |a|)

    (g) limz2

    (|z|2 + 2|z| 3) (h) limx2

    x|x|

  • 8/10/2019 redch2

    4/11

    36 Limits and Continuity

    4. Evaluate the following limits:

    (a) limu 3

    2

    u24u2 (b) limu2

    u24u2

    (c) limv0

    v2+v2v+2 (d) limv2

    v2+v2v+2

    (e) limx

    4

    sin2 xcos2(x)sinx+cos x (f) limx17

    (sin2 x+ cos2 x)

    (g) limx

    2

    sinx2+cos x2

    sinx2

    5. Find the following limits if they exist:

    (a) limx2

    x2x2 (b) limx3

    x29x3

    (c) limxa

    1/x1/ax1

    , a

    = 0 (d) lim

    x4

    |x|4x4

    (e) limx1

    2x33x2+2x1x1 (f) limx3

    x3+27x+3

    6. Find the following limits if they exist:

    (a) limxa

    x4a4xa (b) limx0

    x2xx

    (c) limh0

    4(x+h)34x3h (d) limx0

    122x12x

    (e) limx0

    122x1+2x

    (f) limx10

    (1 log10x)

    7. Find limxa

    f(x)f(a)xa and limt0

    f(a+t)f(a)t for:

    (a) f(x) =x2, a= 3 (b) f(x) = x2, a= 1/3(b) f(x) =x2 + 1, a= 2 (d) f(x) = 3x2 x, a= 0(e) f(x) = 1/2x2 3x+ 1, a= 0 (f) f(x) = (x 3)2 5, a= 1(g) f(x) = |x|2, a= 2 (h) f(x) = x|x|, a= 2

    In problems 8 to 13 find limxa

    g(x)g(a)xa for the given function g and the valuea.

    8. g(x) = x+ 2, a= 93 9. g(x) =

    2x, a= 14

    10. g(x) = x(1 x), a= 1 11. g(x) = (x+ 1)2, a= 1

    12. g(x) = 2x2 + 1, a= 2 13. g(x) = 1x+1 , a= 1

    Find the following limits if they exist:

    14. limx1

    + |x1|x1 and limx1|x1|x1

    15. limx2+

    x+2|x+2| and limx2

    x+2|x+2|

    16. limx0+ f(x), where f(x) = x2, x

  • 8/10/2019 redch2

    5/11

    2.1 Limits 37

    17. limx0

    f(x), where f(x) is defined in question 16.

    18. limx1+

    g(x), whereg (x) = (x 1)2, x >1

    (x 1)3

    , x

  • 8/10/2019 redch2

    6/11

    38 Limits and Continuity

    26. Iff(x) = x2+x6x1 find the following limits if they exist.

    (a) limx0

    f(x) (b) limx1

    f(x) (c) limx3

    f(x)

    (d) limx2 f(x) (e) limx1+ f(x) (f) limx1f(x)

    (g) limx

    f(x) (h) limx

    f(x) (i) limx

    |f(x) x 2|

    Find the following limits if they exist.

    27. limx+

    5x1x+4 28. limx+

    x2+3x+73x22x1

    29. limx+

    2x+5x2+1

    30. limx+

    2x2+4x1x3+4

    31. limx

    +

    x2+6x+6

    32. limx

    +

    x26x+6

    33. limx+

    2x23x+5

    34. limx+

    2x23x+4x+4

    35. limx2

    xx2 36. limx3

    x2

    9x

    37. limx1+

    x+1x21 38. limx1

    x+1x21

    39. limx3

    9x2x3 40. limx0

    1x 1x2

    41. limx3 1x3 2x29

    In problems 42 to 47 sketch the graph of the given function. Find the left and right hand limits at eachof the given values ofx, if they exist. Find the limits at the given values ofx if they exist. Does the limitequal the value of the function at the number in question? Is the function continuous at the given values ofx?

    42. (a) f(x) =

    x+ 6 if x 3,x ifx >3;

    atx = 3; x = 1.

    (b) f(x) =

    3x+ 4 if x < 1,

    x ifx 1; atx = 1; x = 0.

    43. (a) f(x) =

    x2

    ifx

  • 8/10/2019 redch2

    7/11

    2.1 Limits 39

    45. (a) f(x) =

    x+ 1 if x 1; atx = 1, 0.

    (b) f(x) = x ifx 0,x ifx 2; atx = 2.

    (b) f(x) =

    x/3 ifx 10;at x = 1, 10.

    In problems 49 to 62, sketch the graphs of each of the functions defined and determine if each is continuousat the given valuec. (Hint: Use definition of continuity of a function at a point.)

    49. f(x) = 3x2 , at c = 2.

    50. f(x) =

    1

    x+ 4, x = 4

    0, x= 4at c = 4.

    51. f(x) =

    x2 3x+ 2x 1 , x = 1

    5, x >1at c = 1.

    52. f(x) =

    3x 1, at c = 1/3.

    53. f(x) =

    2x+ 1, x 1x+ 4, x >1 at c = 1.

    54. f(x) =

    2x+ 1, x 2x+ 4, x >2

    at c = 2.

    55. f(x) = |x 2|, at c = 2,

    56. f(x) =|

    x

    2

    |, x

    = 2

    1, x= 2 at c = 2.

  • 8/10/2019 redch2

    8/11

  • 8/10/2019 redch2

    9/11

    2.2 Numerical Introduction to Limits 41

    73. limx5

    sin2(x) 74. limx0

    cossinxx

    75. limx

    log10 x+1x 76. limxa log2 x2a2x+a

    77. limx

    log2

    1 + 2x3

    78. lim

    x

    log2(8x 1) + log2

    1x4

    79. limx0

    log10sinxx

    80. lim

    x4

    log10(tan x)

    81. limx1

    log10(x

    2 1) log10(x 1)

    82. limx0

    log10(10x)

    83. limx1

    log2(2x+1) 84. lim

    x2log3(3

    x34)

    85. (a) limx

    2x (b) limx

    2x

    (c) limx0

    log x (d) limx log x

    86. (a) limx 2

    sinx (b) limx 2

    tanx

    (c) limx2

    1x (d) lim

    x2 1

    x2

    87. (a) limx0

    (1 2x) (b) limx0

    log2(1 + 2x)

    (c) limx

    (1 2x) (d) limx

    log2(1 2x)

    2.2 Numerical Introduction to Limits

    In this section we will look at the behaviour of a function near but not ata particular number which mayor may not be in its domain. By observing the values off(x) for specific values ofx near to the point inquestion we can usually get a good idea of what the limit off at that point may be. But no amount ofnumerical data can provide a proof that the limit is a specific number.

    Example: Study the behaviour ofg (x) = (x3 2x2)/(x 2) near x = 2.

    Solution: g(x) =x3 2x2

    x 2 = x2(x 2)

    (x 2) .

    Observe that the only difference between g and x2 is that g(x) is not defined at x = 2 (g(2) = 00 is not areal number!). 2 is not in the domain ofg

    x g(x) x g(x)1.9 3.61 2.1 4.411.99 3.9601 2.01 4.0411.999 3.996001 2.001 4.004001

    Conclusion: From the given data we guess the limit is 4 even thoughg (x) is not defined at x = 2.

    For the given function, f, and number b in problems 88 to 108 answer the following questions.

  • 8/10/2019 redch2

    10/11

    42 Limits and Continuity

    (a) Choose a sequence of values ofx nearb that approachb from the left. Use these values ofx to computea table of values for f(x). Next choose a sequence of values ofx that approach b from the right andcompute another table of values off(x). On the basis of the information given in both tables guesswhich of the following statements are true:

    (i) the function has a limit.

    (ii) the function has a right hand limit.

    (iii) the function has a left hand limit.

    (iv) the function has no limit.

    Guess the values of the limits you think exist.

    (b) If the limxb

    f(x) exists prove that it does.

    88. f(x) = 1

    1x; b= 1.

    89. f(x) = 1 |x|x ; b= 0.

    90. f(x) = 11|x| ; b= 1.

    91. f(x) = 3x + 1; b= 3.

    92. f(x) = 4x2

    2x; b= 2.

    93. f(x) = x+x6x+3 ; b= 3.

    94. f(x) = x3+2x2

    x2

    x+2 ; b= 2.95. f(x) = x

    316xx2+4x

    ; b= 0.

    96. f(x) = x9x3 ; b= 9.

    97. f(x) = cosx1x ; b= 0.

    98. f(x) = (1 +x)1x ; b= 0.

    99. f(x) = 21

    x2 + 1; b= 0.

    100. f(x) = sin 2x ;b = 0. Those people whose last names begin with AM usex = 1/2, 1/4, 1/6, . . .

    to compute a table offvalues. All others use x = 1/3, 1/5, 1/7, 1/9 . . ..

    101. f(x) =cosx1x2 ; b= 0.

    102. f(x) =

    cos x 1 x22 x4

    12

    /x6; b= 0.

    103. f(x) = x+1sin(x+1)(x+1)3

    ; b= 1.

    104. f(x) = (sin x x x3/6)/x5; b= 0.

    105. f(x) = tanxxtanx+x ; b= 0.

  • 8/10/2019 redch2

    11/11

    2.2 Numerical Introduction to Limits 43

    106. f(x) =22 cos x|x| ; b= 0.

    107. Let h andg be two functions and b

    R.

    Evaluate: limxb

    h(x) h(b) (x b)h(b)g(x) g(b) (x b)g(b)

    g(b)h(b)

    .

    108. f(x) = (1 + sin x)1x ; b= 0.

    109. f(x) = (cos x sin x) 1x ; b= 0.

    110. f(x) = arctan 1x ; b= 0.

    111. f(x) = cos sinxx; b= 0.

    112. f(x) = sin 3x2x

    ; b= 0.

    113. f(x) = x3+8x+2

    ; b= 2.

    114. f(x) = 2x1x ; b= 0.

    115. f(x) = sinxsinx ; b= .

    116. f(x) = 2(2x11)x1 ; b= 1.

    117. f(x) = 1x

    x(1x) ; b= 1.

    118. f(x) = xsinxxtanx ; b= 0.

    119. f(x) = tanxx ; b= 0.

    120. f(x) = ex1x

    cos2x1 ; b= 0.

    121. f(x) = lnxsin(x1)(x1)2 ; b= 1.

    122. f(x) = ln(sinx)(2x)2 ; b=

    2

    .

    123. f(x) = ln(x/7)7x ; b= 7.

    124. f(x) = xlnx 1x lnx ; b= 1.

    125. f(x) = x1lnx

    ; b= 1.

    126. f(x) = x1x+245 ; b= 1.

    127. f(x) = x2+|x2|4|x2| ; b= 2.

    128. f(x) = 1+x1x

    1x

    ; b= 0.