schloder

14
1 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl Nano Science STM, LEED and Mass spectrometry R. Schloderer, S. Griessl, J. Freund, M. Edelwirth, W.M. Heckl Introduction • UHV technique • Preparation • STM • LEED • QMS TDS • Concept of new UHV chamber • Conclusion P. Cole, M. Reiter

Upload: edward-pitts

Post on 05-Apr-2017

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Schloder

1 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

STM, LEED and Mass spectrometry

R. Schloderer, S. Griessl, J. Freund, M. Edelwirth, W.M. Heckl

• Introduction

• UHV technique

• Preparation

• STM

• LEED

• QMS

• TDS

• Concept of new UHV chamber

• Conclusion

P. Cole, M. Reiter

Page 2: Schloder

2 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

IntroductionMotivation:• Preparation of ordered

monolayers by self-assembly

• Structure determination• Nanomanipulation• Idea: Preparation of masks

from small molecules

Focus:Small organic molecules (e.g. DNA-bases, liquid crystals) on Ag, graphite, MoS2

real space reziprocal space thermodynamics computer experiment

STM LEED

STRUCTURE

TDS

MOLECULARMECHANICS

LEEDSIMULATION

cell-parameters symmetry group energetics + kinetics euler angles

preparation conditions energie parameters

proof of consistence

experimental concept for the structure determination of self-assembled nucleic acid base layers

Experimental concept for the structure determi-nation of self-assembled nucleic acid base layers

Page 3: Schloder

3 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

UHV technique (Ultra High Vacuum) 1

Why UHV (p < 10-9 mbar)• Absolutely clean surfaces without H2O, O2

or other impurities• Residual-gas-monolayer formation time

more than 1 hour

Experimental effort• Much more than in high vacuum (e.g.

REM)• Setup time several days• Very few materials allowed, mainly

stainless steel, Mo, W, Cu, Ceramics, glass, Teflon, viton

• No lubrication

• Only metal gaskets and valves • Baking minimum 150°C for several

hours• Motion feedthroughs only with bellows• Specialized workshop• Direct motion usually with piezos and

stick slip drives

• LEED, MBE, mass spectroscopy• Sound insolation• Low temperature experiments

Page 4: Schloder

4 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

UHV technique 2

ZentralerManipulator

Page 5: Schloder

5 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

PreparationSubstrate:• Mechanical: splitting, grinding, polishing, ...• Sputter / annealing cycles• Test by LEED, Auger, STM• Goal: atomically regular, flat and clean surface

Adsorbate:• Air: adsorption• UHV: OMBE (Organic

Molecular Beam Epitaxy)• Cleaning by moderate

heating• With a specifically

developed effusion cell an abitrary sequence or mixture of 3 different adsorbates is possible. Þ co-adsorption

experiments

Triple effusion cell; Temperature range: 10°C up to 1000°C

Flansch CF64

Wasserkühlung

Drehdurchführung fürBlendenmechanismus

Blenden

Verdampferkammer

Thermoelementkammer

Anschlüsse fürThermoelement u.Heizung

A

BC

Page 6: Schloder

6 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

STM (Scanning Tunneling Microscope) 1

• Imaging and manipulation with the same instrument• Manipulation of moleculs with small forces• Organic adsorbates need a very stable and sensitive instrument (®UHV).• Nanomanipulation also possible in air and at room temperature• Typical Parameters:

– system: PTCDA on HOPG at ambient conditions– current: 10pA - 1nA, voltage: -1V to +1V – seconds / picture: ~10– pixels: 512 x 512– tunneling distance for imaging: ~5Å– reduction of gap-resistance for manipulation

from 1010W to 109W (Bias :1V to 0.1V)– Time for the whole experiment: several nights

• With STM one obtains information about the local structure in real space, incl. defects!

Bilder DFG vorher, nachher **************

• Although the (well known) principle of a STM is simple and one can see C-atoms with a cheap home-built STM, learning to use it for research usually takes up to several months and going to UHV is a full time job.

F. Trixler, M. Reiter

Page 7: Schloder

7 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

STM 2

Adenine on graphite, 110Þ x 90Þ, unit cell 22.1 Þ x 8.5Þ, a=90°, g=0°

Page 8: Schloder

8 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

LEED (Low Energy Electron Diffraction) 1

Schematic: Geometric evaluation:

Window

Elektron gun

Probe

Electron beam

Screen2. Grid

1. Grid

5kV -

UHV

Screen

d

s

r

a

Grid on the surface

Spot (i,j)

Spot (0,0)

Bragg: n l = a sin (a) = a (s / r)

• Information about periodic structures (unit cell parameters): symmetry group, extension, direction.

• Reciprocal space, superposition of all domains of a large area, ~1mm2

Page 9: Schloder

9 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

Adenin on graphite; 56,6 eV and 28.3 eV

LEED 2

Unit cell: 22.1Þ x 8.5Þ, 90°

Page 10: Schloder

10 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

QMS (Quadrupole Mass Spectrometer)

• Partial pressure down to 1x10-14 mbar• Resolution < 0.2 amu• Typ. scan speed: 0.3 - 5 amu/s• Fragmentation pattern by ionisation • Absolute calibration difficult, but possible• Standard equipment in UHV

1,0E-14

1,0E-11

2,0E-11

3,0E-11

4,0E-11

5,0E-11

6,0E-11

7,0E-11

8,0E-11

9,0E-11

0 20 40 60 80 100 120 140

m [amu]

Part

iald

ruck

Typ. mass spectrum of an unbaked UHV-Chamber

Two operating modi:

1.) Scan: partial pressure vs amu

• Residual gas analysis (RGA)

• Control of pumps

2.) Single Peak: partial pr. vs time

• Leak Test (He)

• TDS

Page 11: Schloder

11 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

TDS (Thermal Desorption Spectroscopy) 1

Goal: Activation energy of desorption at different coverages

Experimental steps:• Cleaning of the substrate• Preparing the adsobate layer(s) with

MBE• Adjusting QMS on main peak of the

adsorbate spectrum• Heating with linear increase of

temperature (e.g. 1°C/s) during recording partial pressure and temperature versus time

• The position, size and shape of the different peaks contains the Information about the binding energy

Temperatur / [°C]

30 40 5 0 60 70 80 9 0 100 110 120 130 140 150

Par

tiald

ruck

bei

135

.1 u

/ (r

elat

ive

Ein

heite

n)

12

3

4

5

6

Adenin on Ag(111); 20, 40, 60, 80, 100 and 180 s MBE-time (#1-6)

Multilayer

Monolayer

Page 12: Schloder

12 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

TDS 2

Evaluation of the activation energy:• Peak-maximum-method (Readhead): simple, but the energy (E) assumed to be coverage

independentPolany-Wigner expression leads to an implicite expression for the energy and maximum temperature

• Complete Analysis: needs a lot of measurements, shows the coverage dependence of E

Temperatur

1/Temperatur

Temperatur

Bedeckung

Par

tiald

ruck

Bed

ecku

ng

σ

ln(P

artia

ldru

ck)

Akt

ivie

rung

ener

gie

......

..σ1

σ1

σ2

σ2

σn

σn

...

Bedeckung / [Monolagen]0.0 0.2 0.4 0.6

Akt

ivie

rung

sene

rgie

/ [k

J/M

ol]

0

50

100

150

200

Page 13: Schloder

13 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

Concept of new UHV chamber

• Compact• Linear arrangement of

experiments• Positioning of sample

only with only one reliable linear feedthrough

• Triple effusion cell• STM, LEED, TDS, QMS,

sputter-gun• Transfer-chamber• Fast experiment cycle

time

STM

Sichtkanälezur ProbeTurbo-

pumpsystemIonen-zerstäuberpumpe

Sputter-gun

QMS

3-fachKnudsenzelle

Tra

nsfe

rkam

mer

Sample stage:• temperature drift compensated• mobile• 8 electrical contacts• resistive heating• sample size max 6 x 6 x 4 mm3

• heat radiation shield

Page 14: Schloder

14 R. Schloderer Uni München, Inst. f. Kristallographie u. Angew. Mineralogie und CeNS Prof. W.M. Heckl

NanoScience

ConclusionWhat we can do:• Standard UHV-technique• Mass spectrometry• Thermal desorption spectroscopy• LEED• Auger• STM (AFM), additional feature: nanomanipulation at room

temperature• Image processing for scanning probe microscopy• Numerical simulations of organic adsorbates (force field calculations)

Near future:Variable temperature (LN2 to 500°C) UHV-STM, tunneling spectroscopy,nanomanipulation