unimasr.com_edac34a45d3b3013a35a82c21308104c

21
7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 1/21 Three Phase Circuits

Upload: brian-robertson

Post on 03-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 1/21

Three Phase Circuits

Page 2: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 2/21

Three Phase Systems

Bulk power generation and transmission

systems are three-phase (3-Φ) systems.

Generation and transmission of electrical

power are more economical and efficient in

(3-Φ) systems than in (1-Φ) systems.

3-Phase Circuits Dr. H.H.Hanafy 2

Page 3: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 3/21

Generation of 3-Phase Voltages

1-Φ Voltage Generation:

0 90 180 270 360

Vm

0

-Vm

N

S

3-Φ Voltage Generation:

The three phases are called: A-B-C or R-S-T or R-Y-B3-Phase Circuits Dr. H.H.Hanafy 3

Page 4: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 4/21

Balance ThreeBalance Three--Phase VoltagesPhase Voltages

Phase a →va = Vm sin ωtPhase b →vb = Vm sin (ωt – 1200)

Phase c →vc = Vm sin (ωt – 2400) = Vm sin (ωt + 1200)

In Phasor Form

Va

Vb

Vc

1200

-

1200

o

o

o

120

120

0

∠=

−∠=

∠=

VV

VV

VV

c

b

a

3-Phase Circuits Dr. H.H.Hanafy 44

Page 5: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 5/21

Types of Three Phase Systems

Balanced Systems:

- 3 phases (V & I) are equal in magnitude and 1200 out of phase

- 3 phase systems are usually balanced in normal operation

- Can be analyzed considering only one phase(per phase equivalent circuit)

Unbalanced Systems:

- 3 phases (V or I) are unequal in magnitude and have unequalphase shift

- Relatively difficult to analyze

(network theorem, symmetrical components)

Three Phase Systems are connected either in:

- Y (wye or star) connection (3 phase 3 wire, or 3 phase 4 wire)

- ∆ (delta) connection3-Phase Circuits Dr. H.H.Hanafy 5

Page 6: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 6/21

Phase Sequence:

The order in which the voltages of the individual phases reach their maximum values.

So the phase sequence for the previous voltages is

a-b-c

 Balanced phase voltages are equal in magnitude andare out of phase with each other by 120°.

A balanced load is one in which the phase

impedances are equal in magnitude and in phase

3-Phase Circuits Dr. H.H.Hanafy 6

Page 7: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 7/21

Balance ThreeBalance Three--Phase VoltagesPhase Voltages

• Two possible configurations:

Three-phase voltage sources: (a) Y-connected ; (b)  ∆-connected

3-Phase Circuits Dr. H.H.Hanafy 77

Page 8: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 8/21

3-Phase Circuits Dr. H.H.Hanafy 8

Page 9: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 9/21

Line and Phase Parameters

 Y (wye or Star) connection(3 phase 3 or 4 wire)

∆ (Delta) connection

A

B

C

a

b

Zab

Zbcc

ZcaA

B

C

ab

c

n

Za

Zb

Zc

N

Phase parameters usually not easily accessible

3-Phase Circuits Dr. H.H.Hanafy 9

Page 10: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 10/21

Phase voltages, Vph:|Van| = |Vbn| = |Vcn| = Vph

Phase currents, Iph:

|I an| = |I bn| = |I cn| = Iph

3-Phase Circuits Dr. H.H.Hanafy 10

Phase sequence a-b-c

Vab = Van – Vbn, Vbc = Vbn – Vcn, Vca = Vcn - Van

From phasor diagram:Vab = 2 |Van| Cos 300 = √3 Vph

i.e. |Vab

| = √3 |Van

| and Vab

leads Van

by 300

-Vbn

300

Vbn

Van

Vcn Vab

Vbc

Vca

Balanced Y System

|Vline| = √3 |Vphase| Iline = Iphase

Line voltages, VL:|Vab| = |Vbc| = |Vca|

Line currents, IL:

|I a| = |I b| = |I c|

Page 11: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 11/21

3-Phase Circuits Dr. H.H.Hanafy 11

Page 12: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 12/21

Balanced ∆ System

Phase voltages, Vph:|Vab| = |Vbc| = |Vca| =Vph

Phase currents, Iph:

|I ab| = |I bc| = |I ca|

Line voltages, VL:|Vab| = |Vbc| = |Vca|

Line currents, IL:

|I a| = |I b| = |I c|

3-Phase Circuits Dr. H.H.Hanafy 12

-Ica

300

Ibc

Iab

Ica

Ib

Ic

Ia

Phase sequence a-b-c

I a = Iab - Ica

From phasor diagram:

Ia = 2 |Iab| Cos 300 = √3 Iph

i.e. |Ia| = √3 |I

ab| and I

alags I

abby 300

Vline = Vphase |Iline| = √3 |Iphase|

Page 13: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 13/21

Balanced 3-Phase Systems

 Y → |VL| = √3 |Vp|, IL = Ip, V (line) leads V (ph) by 300

∆ → VL = Vp, |IL| = √3 |Ip|, I (line) lags I (ph) by 300

Power Factor of a 3-φ load → cos φ

where, φ is the angle between the phase current and the

phase voltage

3-Phase Circuits Dr. H.H.Hanafy 13

3-phase power = 3 x Per phase power

P (3- Φ) = 3 |Vph|.|Iph|. cos φ = √3.|VL|.|IL|. cos φ

Q (3- Φ) = 3 |Vph|.|Iph|.sin φ = √3.|VL|. |IL|. sin φ

S (3- Φ) = 3 |Vph|.|Iph| = √3.|VL|. |IL|)

Page 14: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 14/21

Single phase equivalent circuit of 

the balanced connection

3-Phase Circuits Dr. H.H.Hanafy 14

Page 15: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 15/21

Equivalent circuit per phase3-Phase Circuits Dr. H.H.Hanafy 15

Page 16: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 16/21

Power System Loads

3-Phase Circuits Dr. H.H.Hanafy 16

P F C i

Page 17: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 17/21

Power Factor Correction¾

The design of any power transmission system is very sensitiveto the magnitude of the current in the lines as determined bythe applied loads.

¾ Increased currents result in increased power losses (by a

squared factor since P = I 2 R) in the transmission lines due tothe resistance of the lines.

¾ Heavier currents also require larger conductors, increasing the

amount of copper needed for the system, and they requireincreased generating capacities by the utility company.

¾ Since the line voltage of a transmission system is fixed, the

apparent power is directly related to the magnitude of current .¾ In turn, the smaller the net apparent power, the smaller the

current drawn from the supply. Minimum current is therefore

drawn from a supply when S = P and QT 

= 0.

P.F. Correction Dr. H.H.Hanafy 17

Page 18: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 18/21

Benefits of P.F. Correction :

1.Smaller conductor size (less cost) for powertransmission/distribution (or can carry more

load, i.e. less transmission congestion)

2. Less transmission losses (I2.R)

3. Less voltage drop (I.Z) in transmission

4. Same transformer can supply more load

5. Less Q generation required.P.F. Correction Dr. H.H.Hanafy 18

Increasing the power factor without changing the voltage

Page 19: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 19/21

Increasing the power factor without changing the voltage

or current to the load is called Power Factor Correction.

V

IL

φold V

IL

Ic

IcI

φnew

Original Inductive Load Inductive Load with power factor correction

Phasor diagrams showing the effect of adding a capacitor in parallel with the

inductive loadP.F. Correction Dr. H.H.Hanafy 19

Page 20: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 20/21

Q1 = S 1 sin φold = P tan φold 

Q2 = S 2 sin φnew = P tan φnew

)tan(tan21 newoldC PQQQ ϕ ϕ −=−=

22

CV

X

VQ

C

C ω ==

Power triangle of power factor correction

Value of required shunt capacitance :

22 2 Vf 

Q

V

QC CC

π ω ==

P.F. Correction Dr. H.H.Hanafy 20

For 3 phase systems

Page 21: UniMasr.com_edac34a45d3b3013a35a82c21308104c

7/29/2019 UniMasr.com_edac34a45d3b3013a35a82c21308104c

http://slidepdf.com/reader/full/unimasrcomedac34a45d3b3013a35a82c21308104c 21/21

For 3-phase systems

)tan(tannewoldphCph

PQ ϕ −=

22

cph

C

cCph VC

X

VQ ω ==

Value of required shunt capacitance per phase :

22

2 c

Cph

c

Cph

ph

Vf 

Q

V

QC

π ω 

==

For Star connected capacitors bank  Vc = VL/√3

For delta connected capacitors bank  Vc = VL

Hence: CY = 3 C∆

P.F. Correction Dr. H.H.Hanafy 21