week4_u

81
EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 1 Advantages of Using CMOS Compact (shared diffusion regions) Very low static power dissipation High noise margin (nearly ideal inverter voltage transfer characteristic) Very well modeled and characterized Mechanically robust Lends itself very well to high integration levels AnalogCMOS process usually includes non-salicided poly layer for linear resistors. SiGe BiCMOS is very useful but is a generation behind currently available standard CMOS

Upload: ullas-singh

Post on 29-Sep-2015

215 views

Category:

Documents


3 download

DESCRIPTION

serdes

TRANSCRIPT

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 1

    Advantages of Using CMOS

    Compact (shared diffusion regions) Very low static power dissipation High noise margin (nearly ideal inverter voltage transfer characteristic) Very well modeled and characterized Mechanically robust Lends itself very well to high integration levels Analog CMOS process usually includes non-salicided poly layer for

    linear resistors.

    SiGe BiCMOS is very useful but is a generation behind currently available standard CMOS

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 2

    fT is the frequency at which becomes 1.

    idi g

    =gm

    2fCgs

    gm = CoxWL

    VGS Vt( )

    Cgs = WLCox

    fT gives a fundamental speed measure of a technology.

    0.25 m CMOS: fT ~ 23GHz (VDD = 2.5V) 0.18 m CMOS: fT ~ 57GHz (VDD = 1.8V)

    T = 2fT =

    L2VGS Vt( )

    VDD

    Cgs

    VGS

    vgs

    ig id

    Transistor fT Calculation

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 3

    Static CMOS propagation delay:

    fall CL

    nWnLn

    VDD Vt( )

    rise CL

    pWpLp

    VDD Vt( )

    Assume: Wp = 3Wn for optimum noise margin. Lp = Ln = Lmin

    rise = fall =Lmin (Wp +Wn )Cox

    nCoxWnLmin

    (VDD Vt )

    =Lmin

    2

    n1+

    WpWn

    #

    $ % %

    &

    ' ( (

    1VDD Vt

    =4T

    Operation is 4X slower than theoretical maximum due to n-channel & p-channel gates connected in parallel.

    (Actual values will be higher due to high diffusion capacitances present in sub-micron transistors.)

    Vin Vout

    WnLn

    WnLn

    WpLp

    WpLp

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 4

    IG

    ID

    fT = 57GHz

    Vout Vin

    = 18ps 6.4T

    n-channel ac simulation to determine fT: CMOS inverter transient simulation:

    Verifying with simulation:

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 5

    Single-Ended Signaling in CMOS

    Series R & L cause supply/ground bounce. Resulting modulation of transistor Vts result in pattern-dependent jitter.

    Vin Vout

    sub

    IDD

    ISS

    VDD

    VSS

    Vin

    Vout

    ISS

    IDD

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 6

    Rs = 0 Ls = 0

    clock out

    Rs = 5 Ls = 5nH

    clock out

    data in clock in clock out data out

    " V DD

    " V SS

    " V DD

    " V SS

    data out

    Rs = 5 Ls = 5nH

    Effect of Supply/Ground Bounce on Jitter

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 7

    Summary of CMOS Gate Performance

    1. Simple & straightforward design. 2. Robust operation. 3. Nearly zero static power dissipation.

    Advantages of static CMOS gates:

    1. Full speed of transistors not exploited due to n-channel & p-channel gate in parallel at load.

    2. Single-ended operation causes current spikes leading to VDD/VSS bounce.

    3. Single-ended operation also highly sensitive to VDD/VSS bounce leading to jitter.

    Disdvantages of static CMOS gates:

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 8

    Current-Mode Logic (CML)

    Based on conventional differential pair

    Differential operation

    Inherent common-mode rejection

    Very robust in the presence of common- mode disturbances (e.g., VDD / VSS bounce)

    CML inverter: VDD

    Vin+ Vin-

    Vout- Vout+

    ISS

    R R

    CL CL

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 9

    Vin(DC ) =Vout (DC ) =VDD 12

    ISSR

    To keep current source transistor in saturation:

    VS >VBIAS Vt

    VS =Vin(DC ) VGS

    Vin(DC ) >VBIAS + VGS Vt( )

    12

    ISSR+

    _

    12

    ISSR+

    _

    VDD

    R R

    WL

    WL

    ISS

    VIN(DC )

    VOUT(DC )

    VOUT(DC )

    VS VGS

    + _ VGS

    + _

    VBIAS

    DC Biasing of CML Inverter

    VIN(DC )

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 10

    Vhigh =VDDVlow =VDD ISSR

    Vswing = ISSR

    To achieve full current switching:

    Vswing VGS Vt( )|ID=ISS =2ISS

    nCoxWL

    Vmin

    VswingVmin

    > 1 for correct operation

    VswingVmin

    = R 12

    CoxWL

    ISS

    Logic Swing & Gain of CML Inverter

    VDD

    VDD VDD-ISSR

    ISS

    R R

    CL CL

    WL

    WL

    VDD-ISSR VDD

    ISS 0

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 11

    Av = gmR = R CoxWL ISS

    Small-signal voltage gain:

    Note: rising & falling time constants are the same

    Recall

    VswingVmin

    = R 12

    CoxWL

    ISS > 1

    for full switching

    VswingVmin

    =Av2

    Av 2

    (Assuming fanout of 1)

    rise/fall time constant:

    = RCL

    CL = CoxWL

    = R(WLCox )

    Small-Signal Behavior of CML Inverter

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 12

    Speed vs. Gain in Logic Circuits

    Largest possible gain-bandwidth product is desirable.

    fast input transition: step response determined by

    slow input transition: step response determined by Av

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 13

    Av = R nCoxWL ISS

    Av2 = nCox

    WL

    ISSR2

    =nL2

    RWLCox( ) ISSR( )

    Av2 =

    nL2

    Vswing

    large-signal gain-bandwidth product

    Av2

    =

    nL2

    Vswing

    Relationship between Av , , and Vswing

    Larger logic swing preferred for higher gain-bandwidth product

    Larger Vswing Larger Vmin smaller W/L larger current density

    Vswing

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 14

    Suppose we decrease current density by increasing W/L:

    WL2 Vmin

    12

    , CL 2

    R 12

    = RC 2Slower!

    Thought Experiment

    R R

    WL

    WL

    R R

    WL

    WL

    ISS ISS

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 15

    Note that the load is only one gate capacitance:

    CML speed ~ 2.5 times faster than static CMOS

    IG

    ID

    fT = 57GHz

    n-channel ac simulation to determine fT:

    CML buffer transient simulation:

    = RCL = RgmT

    =AvT

    2

    T

    = 8ps 2.9T

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 16

    Typical Vswing: Should be large enough to allow sufficient gain-bandwidth product. Should be small enough to prevent transistors from going into triode. * CML will still work in triode (unlike BJT), but there is no additional speed benefit.

    Vswing = ISSR

    Once Vswing has been chosen, designer can trade off between gain & bandwidth by parameterizing between R & ISS:

    Higher speed: ISS R

    Higher gain: ISS R

    Av = R CoxWL ISS

    = R(WLCox )

    0.3 VDD

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 17

    Other Benefits of CML Gates

    1. Constant current bias VDD / VSS bounce greatly reduced

    KCL sets this current to be nearly constant.

    ISS

    ISS

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 18

    data in clock in

    Rs = 0 Ls = 0

    clock out

    clock out

    Rs = 5 Ls = 5nH

    clock out

    data out

    " V DD

    " V SS

    " V DD

    " V SS

    data out

    Rs = 5 Ls = 5nH

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 19

    2. Non-inverting buffer available without additional delay: CMOS:

    inverter buffer

    CML:

    inverter buffer

    Vin+

    Vin

    Vout+

    Vout

    Vin+

    Vin

    Vout

    Vout+

    tp 2tp

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 20

    Fanout & Scaling of CML Gates

    1x

    =

    nx

    = All voltages unchanged from unit-sized buffer. Currents & power increase by factor of n.

    ISS

    Vin+ Vin-

    Vout- Vout+ R R

    WL

    WL

    nISS

    Vin+ Vin-

    Vout- Vout+ R/n R/n

    n WL

    n WL

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 21

    For fanout of n:

    = nCLR

    Av2

    =

    2nL2

    Vswing

    increases linearly with fanout.

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 22

    From interconnect, etc.; assumed not to scale with buffer sizes

    = nCL +Cp( ) R / n( ) = WLCoxR 1+CpnCL

    %

    & ' '

    (

    ) * *

    Av2 = 2nCox

    nWL nISS( ) R / n( )

    2= 2nCox

    WL ISSR

    2

    Av2

    =

    2nL2

    Vswing 1+CpnCL

    %

    & ' '

    (

    ) * *

    1

    Should set

    n 0.1 Cp /CL( )degradation due to interconnect capacitance

    to minimize

    Power (proportional to n) determined primarily by interconnect capacitance!

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 23

    Sub-micron MOSFETs obey square-law characteristics only in a limited region!

    CML buffer design procedure:

    1. Determine largest allowable ISS (usually limited by electromigration constraints) 2. Choose unit-sized n-channel transistor (typically W/L=20) 3. Run a series of simulations to determine optimum value of R:

    R too small: full current switching not achieved R too large: slower than necessary

    4. Choose minimum scaling factor after laying out some test buffers of various sizes and determining approximate value of interconnect capacitance Cp.

    VGS

    ID

    Mobility reduction (linear)

    Square-law behavior

    Weak inversion (exponential)

    + _ VGS

    ID

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 24

    1. Determine largest allowable ISS

    I D Imax

    standard layout shared drain (1/2 diffusion capacitance)

    Imax independent of W determined by electromigration limits

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 25

    R = 1200 ISSR = 480mV

    tp = 12ps *R optimum*

    R = 900 ISSR = 360mV

    tp = 10ps R too small

    R = 1500 ISSR = 600mV

    tp = 14ps R too large

    CML Design Procedure Example

    ISS = 400A

    WL

    =4 m

    0.18 m

    Choose:

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 26

    Parameterizing Between Gain & Bandwidth ISS = 100 A R = 4.8 k Av = 9.3 dB BW = 2.6 GHz

    ISS = 200 A R = 2.4 k Av = 7.1 dB BW = 5.5 GHz

    ISS = 400 A R = 1.2 k Av = 3.9 dB BW = 11.5 GHz

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 27

    R GBWGSCALE MSCALE

    ISS GSCALE MSCALE

    GBW

    WL GSCALE MSCALE

    GSCALE: Global scaling parameter (depends on Cp) MSCALE: Local scaling parameter (depends on fanout or bit rate) GBW: Gain-bandwidth parameter

    Parameterized CML Buffer

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 28

    CML with p-channel Active Load

    p-channel load transistors operates in triode region: Increased capacitance and mismatch result

    Can be used if linear resistors are not available.

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 29

    Capacitance Comparison (1)

    Poly resistor:

    p-channel MOSFET:

    C 12Cpolysub

    C Cdepletion +12 Cchannelgate + Cchannelsub( )

    gate

    sub

    channel

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 30

    Cpoly-sub Cchannel-sub : 0.13 fF/m2 Cdepletion : 1.20 fF/m2

    Cchannel-gate : 7.80 fF/m2

    Poly resistor:

    p-channel MOSFET:

    C 12Cpolysub

    C Cdepletion +12 Cchannelgate + Cchannelsub( )

    Wchannel = Wdiff = 2.5 m Lchannel = 0.18 m

    Ldiff = 0.3 m

    Wpoly = 0.6 Lpoly = 2.5

    = 0.1 fF

    = 0.9 fF + 1.8 fF + .03 fF = 2.8 fF

    Capacitance Comparison (2)

    (Numbers based on TSMC 180nm CMOS process)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 31

    R = 1.2 k s = 235 /! Wr = 0.6 m Lr = 2.5 m Cres = 0.1 fF

    Wp = 2.5 m Ldiff = 0.3 m

    Cd2 = 2.8 fF

    M2 M2

    M1 M1 M1 M1

    Cd1 = 3.7 fF Cg1 = 5.8 fF

    Capacitance Comparison (3)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 32

    Pulse Response Comparison PWin = 100ps

    resistor load R = 1.2 k

    td = 16 ps; PWout = 100 ps

    p-channel load (W/L)p = 2.5 m / 0.18 m td = 20 ps; PWout = 98 ps

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 33

    Eye Diagram Comparison including mismatch effects

    resistor load

    = 1.5% mismatch

    RR

    160mV gate-referred mismatch

    IDID

    = 4% mismatch

    p-channel load

    ISI

    DCD

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 34

    MA MA

    MB MB

    MA MA

    Series-Gated CML Topology

    XOR gate:

    Common-mode voltage of BP/N critical:

    Too low current source transistor biased in triode Too high Transistors MB biased in triode

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 35

    VBP VBN

    VS

    I1 I2

    I1 I2

    -ISS

    ISS

    Slope = gm

    Transistors should be biased in saturation to realize maximum gm . Especially important when gate voltages exhibit slow slew rates

    BP BN

    VBP VBN

    Series-Gated CML (2)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 36

    VB(cm) = 1.6

    VB(cm) = 1.3 VB(cm) = 1.0

    VBP VBN

    t

    VB(cm) = 1.6

    VB(cm) = 1.3 VB(cm) = 1.0

    DC current:

    Transient response: (400mV amplitude sine wave applied to BP/BN)

    IBP IBN

    IBP IBN

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 37

    Level-Shifting CML Buffer

    VDD

    Rcm

    ISS

    R R

    +

    _

    ISSRcm

    Output levels:

    Vhigh = VDD ISSRcm( )

    Vlow = VDD ISSRcm( ) ISSR

    Used to drive clock inputs of series-gated CML gates

    Vswing = ISSR

    DC levels shifted down by ISSRcm Vswing unchanged

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 38

    Be reassigning the inputs, the XOR can be transformed into a Select circuit. Used in a 2:1 multiplexer.

    CML Select Circuit

    ISS

    R R

    AP AN BP BN

    SELA SELB

    OUTP OUTN

    SELA

    AP/N

    BP/N

    OUTP/N

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 39

    CML Latch

    By setting BP/N = OUTP/N, we can construct a CML latch:

    ISS

    DP DN

    OUTP OUTN

    CKP CKN

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 40

    CML D Flip-Flop

    Output OUTP/N is synchronized with CKP/N falling edge.

    DP DN

    CKP CKN

    XN XP

    XP XN

    OUTN OUTP

    CKP CKN

    CKP/N

    DP/N

    OUTP/N

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 41

    CML Latch Design Considerations

    IGG

    VGG

    dc operating points

    Necessary criterion for bistability:

    rgg =2

    1/ R gm=

    2R1gmR

    < 0 at middle operating point

    (Equivalent to loop gain = gmR > 1)

    slope=1/rgg

    IGG VGG

    12

    ISS

    R R

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 42

    gmR > 1

    gmR 1

    gmR 1

    transparent latch

    Avoiding Latch Transparency

    XP/N

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 43

    R=1000

    R=800

    R=600

    GBW parameter can be increased to ensure bistability.

    gmR > 1

    gmR 1

    gmR < 1

    DP DN

    CKP CKN

    QINQIP

    QIP QIN

    OUTNOUTP

    CKPCKN

    XP XN

    XP XN

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 44

    Buffering Clock Signals (1)

    Clock signals (generated from VCO or clock divider) often drive large capacitive loads.

    1x

    Fanout = n

    = nRC f3dB =1

    2

    C

    C

    C

    For a large fanout, attenuation of clock amplitude will occur.

    1x

    1x

    n

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 45

    1x k x k2 x

    n x

    m stages

    Now is increased by k

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 46

    Since clock signal is made up of a single frequency (+ harmonics), resonance can be used to increase gain with greatly reduced power dissipation.

    Y = 1R

    + jC + 1jL

    =(12LC) + j(L / R)

    jL

    Resonant frequency:

    r =1LC

    Y = 1R

    at resonance

    If lossless inductors were available, we could achieve high gain at any frequency simply by choosing the correct inductor value.

    Buffering Clock Signals (3)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 47

    On-Chip Passive Elements

    R = tw

    Resistor:

    C w d

    Capacitor:

    d w

    substrate

    (+ fringing)

    Inductor:

    t

    t w

    l

    w

    Inductance calculation much more complicated!

    l

    l

    l

    l

    L 0.2 ln 2

    t + w

    #

    $ %

    &

    ' ( + 0.50049+

    t + w3

    )

    * +

    ,

    - . pH/m l

    l l

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 48

    t w

    Special case of Greenhouse result

    Note for l >> w, L is a weak function of w

    To increase effective inductance per unit length, we make use of mutual inductance via spiral structure:

    L 0.2 ln 2

    t + w

    #

    $ %

    &

    ' ( + 0.50049+

    t + w3

    )

    * +

    ,

    - . pH/m l

    l l

    l

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 49

    Modeling of Spiral Inductor

    Design of inductor requires: inductor simulation package (e.g., asitic) trial and error conversion to lumped

    element model

    number of turns n = 2

    1

    2

    Accurate lumped model should include: Series inductance (self + mutual) & resistance Skin effect (frequency dependent series resistance) Interwinding capacitance Capacitance to substrate Substrate capacitance & loss

    Procedure for constructing lumped model: 1. 2-port s-parameters over frequency range of interest

    (this comes from the inductor simulator) 2. Choose lumped circuit topology. 3. Run simulations to find the optimal lumped circuit

    element values such that the the circuit s-parameters are sufficiently close to the inductors s-parameters (can use .net and .optimize in HSPICE)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 50

    Parameters most relevant to circuit designers: Inductance Series resistance Self-resonant frequency

    http://rfic.eecs.berkeley.edu/~niknejad/asitic.html

    Link to asitic web pages:

    Modeling of Spiral Inductor (cont.)

    Inductor magnitude impedance vs. frequency

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 51

    1

    2

    Cint

    L Rs

    Cox2 Cox1

    Csub1 Csub2 Rsub1 Rsub2

    1 2

    L: Rs:

    Cint: Cox:

    Csub/Rsub:

    Self/mutual inductance Series resistance Interwinding capacitance Oxide capacitance Substrate capacitance/resistance

    Values of L and Rs in lumped model should correlate with physical parameters. Values of other lumped model elements need not necessarily correlate with physical parameters.

    Modeling of Spiral Inductor (cont.)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 52

    Parasitic capacitances usually combine with load capacitance L should be decreased slightly

    Series Rs has more important effect:

    Y = 1R

    + jC + 1Rs + jL

    L

    Rs

    C R

    " Y = 1" R

    + jC + 1j " L

    R C L'

    At resonance, Im [Y(jr)] = 0:

    r2

    =1

    LC

    RsL

    $

    % &

    '

    ( )

    2

    r2

    =1# L C

    Y jr( ) = 1R +CRs

    L

    " Y jr( ) = 1" R

    " L = L

    1 CRs2

    L

    " R = R || LCRs

    #

    $ %

    &

    ' (

    Slight increase in effective inductance Very important effect!

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 53

    Differential-mode ground Sets common-mode output voltage

    Gain at resonant frequency = gm R CL resonates out with L

    CML Tuned Amplifiers (1)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 54

    Symmetric inductor structure can be used:

    Single structure allows more inductance to be realized from mutual coupling less series resistance

    CML Tuned Amplifiers (2)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 55

    Gain is much higher at resonance, but depends completely on Rs. Variation in gain correlates with variation in metal (not resistor) sheet resistance.

    CML Tuned Amplifiers (3)

    Higher-gain topology:

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 56

    R C L Vswing

    +

    _

    Iin

    IL

    Let Vswing = 500mV, L=0.5nH, f =10GHz:

    Spiral inductor should be wide enough to meet ac electromigration specs.

    Iin =Vswing

    " R

    IL =Vswing # L

    IL = 16mA

    Watch out for ac current amplitude in inductors!

    CML Tuned Amplifiers (4)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 57

    Inductors in Broadband Circuits

    R

    R

    Vin Vout

    +

    _

    LC lossless transmission line (Z0) R

    RCVin

    Vout

    +

    H(s) = 12

    1

    1+ s CR2

    | H( j) |

    H( j)

    90!

    2CR

    H(s) = 12esTd

    Td = LC

    for R = Z0

    | H( j) |

    H( j)

    0.5 0.5

    slope = -Td

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 58

    Series Peaking (1)

    Cd Cg

    Cd Cg

    Lser

    With direct connection of 2 buffers, output & input capacitances are in parallel:

    By connecting an inductor between the capacitors, the bandwidth and delay increase:

    Series peaking

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 59

    Series Peaking (2)

    Cd = Cg = 16 fF R = 400

    Lser Cd Cg

    R

    Vin+ Vin-

    Vx+

    Vx-

    R LserCd

    Using

    Lser CdR2set

    VxVin

    VxVin

    #

    $ %

    &

    ' (

    Lser = 0 BW = 6.3 GHz

    Lser = 3.5 nH BW = 8.3 GHz

    Lser = 3.5 nH

    Lser = 0

    Frequency response:

    Vin

    Vx (Lser = 0)

    Transient response: Vx (Lser = 3.5 nH)

    Vin

    Vx (Lser = 0)

    Series peaking provides speed at the expense of extra delay.

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 60

    Shunt-Peaking (1)

    By connecting an inductor in series with the load resistor (series connection in shunt with output), more current is used, for a longer time, to charge the load capacitance.

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 61

    Properties of Shunt-Peaking

    r2

    =1

    LCL1 CLR

    2

    L

    $

    % &

    '

    ( )

    Resonant frequency:

    No resonance for

    LCLR

    2< 1

    CL

    X Re s

    Im s

    L = 0: pole at s = 1/RC

    X O

    L 0: zero at s = R/L additional pole at s (1/CR + R/L)

    Z(s) = R 1+ s L

    R1+ sCLR + s

    2LCL

    Z( j) = R 1+ j L

    R12LCL( ) + jCLR

    Frequency response:

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 62

    L = 0BW = 6.3 GHz

    LCLR

    2= 0.3

    L = 1.8 nH BW = 9.4 GHz

    LCLR

    2= 0.6

    L = 3.7 nH BW = 14.3 GHz

    Shunt-Peaking -- AC Response

    Use of shunt-peaking increases small-signal bandwidth

    CL = 38 fFR = 400

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 63

    Shunt Peaking Transient Response

    Step Response:

    L = 0td = 13.4 ps

    L = 1.8 nH td = 8.5 ps

    L = 3.7 nH td = 6.7 ps

    Pulse Response (tin = 50 ps):

    L = 3.7 nH tout = 50.8 ps ISI = 16 mUI

    L = 1.8 nH tout = 50.0 ps ISI = 0 mUI

    L = 0 tout = 48.7 ps ISI = 26 mUI

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 64

    LCLR

    2= 0

    LCLR

    2= 0.3

    LCLR

    2= 0.6

    Shunt Peaking ISI vs. Pulse Width

    ISI (UI)

    Input pulse width

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 65

    Other Advantages of Shunt-Peaking

    CML load is passive & linear

    Can be shown to be very robust in the presence of parasitic series resistance and shunt capacitance inductors can be placed far away from other CML circuit elements.

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 66

    long metal lines

    Effect of Shunt-Peaking Inductor Parasitics (1)

    Series resistance RP simply adds to R Shunt capacitance CP resonates with L

    L L

    R R

    CL CL CL CL

    L L

    R R

    RP RP

    CP CP

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 67

    LCLR

    2= 0

    LCLR

    2= 0.3

    LCLR

    2= 0.6

    LCLR

    2= 0

    LCLR

    2= 0.3

    LCLR

    2= 0.6

    Moderate amount of parasitic capacitance has similar effect to slightly larger inductor.

    Disadvantages of using passive inductors: Consume huge die area Difficult to design & model

    Effect of Shunt-Peaking Inductor Parasitics (2)

    CP = 0

    CP = 0.2CL

    Input pulse width

    Input pulse width

    ISI (UI)

    ISI (UI)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 68

    Multi-layer Inductors (1)

    metal 6

    metal 5 d

    Distance d between two metal layers is much smaller than lateral distances (e.g., w, l, s)

    metal 6

    metal 5

    d

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 69

    12

    #

    $ %

    &

    ' ( =

    L1 MM L2

    )

    * +

    ,

    - .

    i1i2

    #

    $ %

    &

    ' (

    L1 L2 1 2

    +

    _

    +

    _

    i1 i2

    2-port representation of coupled inductors:

    M = k L1L2

    Passivity constraint: 1k

    For metal geometries close to each other, k is close to unity.

    series connection of coupled inductors:

    L1 L2

    i1

    i2

    M 1

    +

    _ 2

    +

    _

    series =1 +2 = (L1 + M)i1 + (L2 + M)i2

    iseries = i1 = i 2

    Lseries =seriesiseries

    = L1 + L2 + 2M

    For L1 = L2 = L, we have:

    Lseries = 2L + 2M = 2L(1+ k) 4LIn general, for n layers we have:

    Lseries n2L

    Multi-layer inductors are more appropriate for shunt-peaking than resonant structures due to additional contact resistance.

    Multi-layer Inductors (2)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 70

    Ci

    Cj

    For more details, see: A. Zolfaghari, A. Chan & B. Razavi, Stacked inductors and transformers in CMOS technology, IEEE Journal of Solid-State Circuits, vol. 36, April 2001, pp. 620-628.

    Leffective 4L

    Ceffective 13

    Ci +1

    12Cj

    Effective Capacitance:

    Multi-layer Inductors (3)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 71

    metal 6 only 100 x 100 w = 4; s = 2; n = 4 L=2.0 nH R=6.9

    metal 6 over metal 4 46 x 46 w = 4; s = 2; n = 2.5 L=2.0 nH R=12.5

    +

    Multi-layer Inductors (4)

    Area comparison:

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 72

    Active Inductors (1)

    Rgyr

    +

    _ v1

    i1 +

    _

    v2

    i2

    Ideal gyrator:

    v2 = Rgyr i1v1 = Rgyr i2

    Impedance inversion:

    Rgyr

    +

    _ vin

    iin

    C

    Zin = Rgyr2 sC( )

    Port 1 exhibits inductance when port 2 is connected to a capacitance.

    v1v2

    "

    # $

    %

    & ' =

    0 RgyrRgyr 0)

    * +

    ,

    - .

    i1i2

    "

    # $

    %

    & '

    Matrix representation (Z-parameters):

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 73

    Active Inductors (2)

    RG

    +

    _

    v1 i1

    +

    _ v2

    i2

    i1 applied with port 2 open-circuited:

    i2 applied with port 1 open-circuited:

    v2 =1

    gmi1

    v1 = RG 1

    gm

    #

    $ %

    &

    ' ( i2

    (Assume RG gm > 1)

    v1v2

    "

    # $

    %

    & ' =

    1 gm RG 1 gm( )1 gm 1 gm

    )

    * + +

    ,

    - . .

    i1i2

    "

    # $

    %

    & '

    Complete Z-parameters (lossy/active gyrator):

    Consider common-drain configuration:

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 74

    v1v2

    "

    # $

    %

    & ' =

    1 gm 1 gm RG1 gm 1 gm)

    * +

    ,

    - .

    i1i2

    "

    # $

    %

    & '

    +

    _

    vin

    Active Inductors (3)

    Interpretation of non-ideal matrix entries:

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 75

    Zsource =1

    gm

    1+ sCgsRG1+ sCgs gm"

    # $

    %

    & '

    At low frequencies (Cgs open) Zsource = 1/gm

    At high frequencies (Cgs short) Zsource = RG

    Active Inductors (4)

    Impedance at port 1 with port 2 terminated with transistor Cgs:

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 76

    gmCgs

    1CgsRG

    1gm

    RG

    Zsource

    Leff CgsRG

    gm=

    RGT

    gmRG > 1

    Equivalent circuit:

    +

    _

    vin

    1gm

    RG 1

    gm

    Cgs RGgm

    Active Inductors (5)

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 77

    Av =gm 1gm 2

    =W1W2

    For shunt peaking:

    L 0.3CLR2

    CgsRGgm2

    = 0.3 CLgm2

    2

    gm 2RG = 0.3CLCgs

    Low-frequency gain:

    CML Buffer with Active Inductor Load

    WL

    "

    # $

    %

    & ' 1

    =40.18

    WL

    "

    # $

    %

    & '

    2

    =2.50.18

    ISS = 400A

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 78

    Active Inductor AC Response

    RG = 4k

    RG = 2k

    RG = 0

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 79

    Active Inductor Transient Response (1)

    RG = 0 PW = 97ps

    RG = 5k PW = 100 ps

    RG = 10k PW = 104 ps

    Differential signals:

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 80

    Active Inductor Transient Response (2)

    Problem: n-channel load shifts output by Vt. Vsb > 0; body effects exacerbates this effect..

    Single-ended input

    Single-ended outputs

    Single-ended signals:

  • EECS 270C / Winter 2014 Prof. M. Green / U.C. Irvine 81

    Alternate topology: p-channel load exhibits lower Vt (Vbs = 0)

    Active Inductor Alternate Topology

    differential

    single-ended