線性代數 ch04_orthogonality

Post on 07-Jul-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Ch04_Orthogonality

    1/34

    National United UniversityDepartment of Electrical Engineering, Taiwan

    Chapter 4

    Orthogonality

    Jen-Chieh Liu

     

    Outline

    Length and Dot Product of Vectors

    Orthogonality of the Four Subspace

    Projections

    Least Squares Approximations

    Orthogonal Bases and Gram-Schmidt

  • 8/19/2019 Ch04_Orthogonality

    2/34

     

     Length and Dot Product in R n

    Length of vector ( ) in Rn is :),,,( 21   nvvv   L=v

    Properties of the dot product :

     

     Length of a Vector in R n

    In R5, the length of is)2,4,1,2,0(   −−=vv

    ),,( 173

    17

    2

    17

    2   −

    =vv

    In R3

    , the length of is

  • 8/19/2019 Ch04_Orthogonality

    3/34

     

    Orthogonal (1/3)

    Def : Product or inner product (over Rn).

    [ ]   nn

    n

    nT  wvwvwv

    w

    w

    w

    vvvwvwv   vvKvvvv

    vM

    v

    v

    vKvvvvvv +++=

    ==⋅ 22112

    1

    21   ,,,

    (real number )

    222

    2

    2

    1   vvvvvv nT    vv

    Kvvvv

    =+++== (norm)

    Length of a vector :

    Def : Two vectors and are orthogonal, ifvv

    wv

    0=wvT  vv

     

    Orthogonal (2/3)

    In R2, and are orthogonal ?

    Sol:Sol:Sol:Sol:

    −1

    1

    1

    1

    Remark :

  • 8/19/2019 Ch04_Orthogonality

    4/34

     

    Orthogonal (3/3)

    Proof 

    Remark :222

    0   wvwvwvT    vvvvvv

    +=+⇔=

    Def : Two subspace V and W are orthogonal, if 

    all and all0=wv

    T  vv

    V v∈v

    W w∈v

     

     Find Dot Products

    )3,4(),8,5(,)2,2(   −==−=   wvuvvv

    Find each solution

    (a)   ; (b)   ; (c)   ;

    (d)   ; (e)

    vuvv⋅   wvu

    vvv)(   ⋅   )2(   vu

    vv⋅

    2||||w

    v)2(   wvu

    vvv−⋅

    Sol:Sol:Sol:Sol:

  • 8/19/2019 Ch04_Orthogonality

    5/34

     

     Nullspace and Left Nullspace

    ∴The nullspace N(A) and the row space C(AT ) are orthogonal

    subspace of Rn.

    0)(

    0)2(

    0)1(

    0

    0

    0

    2

    1

    =⋅

    =⋅

    =⋅

    =

    =

     xrowm

     xrow

     xrow

     x

    rowm

    row

    row

     x A

    v

    M

    v

    v

    M

    v

    M

    v

    Similarly,

    =

    =

    0

    0

    0

    )(

    )2(

    )1(

    M

    v

    M

    v y

    columnn

    column

    column

     y A

    The left nullspace N(AT ) and the row space C(A) are orthogonal

    subspace of Rm.

     

    Orthogonal Complement (1/3)

    Def : The orthogonal complement V ⊥ of a subspace V 

    contains every vector that is orthogonal to V .

    ie.,

     N(A)⊥ C(AT ) , N(AT )⊥ C(A)

    {   V vall for vwwV   T 

    ∈==⊥   vvvv

    ,0:Remark : V ⊥ is also a subspace.

    (1)

    (2)

    Claim : (C(AT ))⊥ = N(A)

    =

    0

    0

    0

    M

    v x

    (C(AT  ))⊥⊥⊥⊥

  • 8/19/2019 Ch04_Orthogonality

    6/34

     

    Orthogonal Complement (2/3)

    Claim : ( N(A))⊥ = C(AT )

    Proof 

     

    Orthogonal Complement (3/3)

    (C(AT ))⊥ = N(A) ( N(A))⊥ = C(AT )

    Similarly, A = AT  , (C(A))⊥ = N(AT ), ( N(AT ))⊥ = C(A)

    Fundamental theorem of linear algebra Part II.

  • 8/19/2019 Ch04_Orthogonality

    7/34

     

     Bases from Subspace (1/3)

    Proof 

    Claim : are independent in Rn if and only if

    span Rn .nvvv

      vK

    vv,,, 21

    nvvv  vK

    vv,,,

    21

     

     Bases from Subspace (2/3)

    Claim : If V ⊥W . then V  ∩ W = {0}

    Proof 

    Claim : For any vector , we can have

    When and

    n R x∈

    vnr    x x x

      vvv+=

    )(  T 

    r    AC  x   ∈v

    )( A N  xn ∈v

    Proof 

  • 8/19/2019 Ch04_Orthogonality

    8/34

     

     Bases from Subspace (3/3)

     

    Orthogonality of the Four Subspace (1/2)

    Remark : The decomposition

    is uniquenr    x x x  vvv+=

    Remark : For every ,

    Where and

    ln x x x cvvv

    +=m

     R x∈v

    )( AC  xc ∈v

    )(ln

    T  A N  x   ∈

    v

    (column space) (let nullspace)

  • 8/19/2019 Ch04_Orthogonality

    9/34

     

    Orthogonality of the Four Subspace (2/2)

     

     Bases from Subspace

    Proof 

    Claim : Every in the column space comes from one and

    only one vector in the row space.bv

    we can have

    = 63

    21

     A

    = 3

    4

     x

    v

  • 8/19/2019 Ch04_Orthogonality

    10/34

     

     Projections (1/2)

    what are the projections of onto the z axis

    and x-y plane?

    =

    4

    3

    2

    bv   b

    v

    =

    5

    2

    1

    bv

     

     Projections (2/2)

  • 8/19/2019 Ch04_Orthogonality

    11/34

     

     Projections onto a Line (1/2)

    bv

     pv

     Lev

    av

    We want to find the projection of onto the line

    in the direction of 

    =

    mb

    b

    b

    bM

    v2

    1

    =

    ma

    aa

    aM

    v   2

    1

     

     Projections onto a Line (2/2)

  • 8/19/2019 Ch04_Orthogonality

    12/34

     

     Projection and Error Matrix (1/3)

    =

    1

    1

    1

    bv

    =

    2

    2

    1

    av

    , projects ontobv

    av

    Projection matrix

     

     Projection and Error Matrix (2/3)

    Check,  pbe  vvv−=

    Note :bv

     L

    av

  • 8/19/2019 Ch04_Orthogonality

    13/34

     

     Projection and Error Matrix (3/3)

    In general,

     

     Projection onto a subspace (1/3)

    Start, with n independent vectors in Rm. We

    want to find as a projection of 

    a given vector .

    naaa  vK

    vv,,,

    21

    nna xa xa xP  v

    Kvv

    ˆˆˆ2211  +++=

    bv

    Let

    =   naaa A  v

    Kvv21

    Then

    [ ]

     x A x A

     x

     x

     x

    aaa A

    n

    n

    ˆˆ

    ˆ

    ˆ

    ˆ

    2

    1

    21

    ==

    =

    v

    MvKvv

    The error vector should be orthogonal to the subspace

    spanned by (the column space of A)n

    aaa  vK

    vv,,,

    21

     x Ab   ˆ−v

    b

    v

     pv

  • 8/19/2019 Ch04_Orthogonality

    14/34

     

     Projection onto a subspace (2/3)

    The matrix is square and symmetric, and it is invertible

    iff are independent (to be proved later)

     A AT 

    naaa  vK

    vv,,,

    21

     

     Projection onto a subspace (3/3)

  • 8/19/2019 Ch04_Orthogonality

    15/34

     

     Find the Projection Vector and Matrix (1/2)

    =

    =

    0

    0

    6

    21

    11

    01

    band  Av

    projects onto Abv

    Sol:Sol:Sol:Sol:

     

     Find the Projection Vector and Matrix (2/2)

    Check :

  • 8/19/2019 Ch04_Orthogonality

    16/34

     

     Rank for Projection (1/2)

    Claim : ( ) ( )   ( ) Arank  AArnak  A Arank    T T  ==

    Proof 

     n× ×× ×  n m× ×× ×  m m× ×× ×  n

     

     Rank for Projection (2/2)

    Therefore, , which implies( )   ( ) A N  A A N    T  =( )   ( )   ( )   ( ) Arank  A Arank  Arank n A Arank n   T T  =⇒−=−

    Similarly, putting AT as A, we can get

    rank ( AT  A) = rank ( AT ) = rank ( A)

    Remark : AT  A is invertible iff  A has independent columns

    Proof 

  • 8/19/2019 Ch04_Orthogonality

    17/34

     

     Least Squares Approximations

    It often happens that has no solution.

    We cannot always get the error down to zero.

    In this case, we may want the length of , or as small

    as possible.

    least square solution

    b x Avv

    =

     x Abe  vvv−=

    ev   2

    ev

    Find the best line to the points (0, 6), (1, 0) and (2, 0)

    Sol:Sol:Sol:Sol:

     

     By Geometry

    Sol:Sol:Sol:Sol:

  • 8/19/2019 Ch04_Orthogonality

    18/34

     

     By Linear Algebra (1/2)

    Sol:Sol:Sol:Sol:

     

     By Linear Algebra (2/2)

  • 8/19/2019 Ch04_Orthogonality

    19/34

     

     By Calculus (1/2)

    Sol:Sol:Sol:Sol: ( ) ( )( )

    ( )( )22

    222

     B A

     A B A B A A

     E 

    +=

    ′+=+

     

     By Calculus (2/2)

  • 8/19/2019 Ch04_Orthogonality

    20/34

     

     Least Squares Approximations - Best Line (1/3)

    Find the best line to the points (1, 1), (2, 2) and (3, 2)

    Sol:Sol:Sol:Sol:

    )1,1(

    )2,2(

    )2,3(

     Dt C  y   +=

    1 p

      2 p

    1b

    3e

     

     Least Squares Approximations - Best Line (2/3)

  • 8/19/2019 Ch04_Orthogonality

    21/34

     

     Least Squares Approximations - Best Line (3/3)

     

     Fitting a straight Line (1/2)

    Fit heights, b1, b2, …. , bm at times, t 1, t 2, … , t m by a

    straight line C + Dt .

    Sol:Sol:Sol:Sol:

    =

    =+

    =+

    =+

    mmmm  b

    b

    b

     DC 

    b Dt C 

    b Dt C 

    b Dt C 

    MMMMM

    2

    1

    2

    1

    22

    11

    1

    1

    1

    This is not solvable. Best fit : b A x A A  T T   v=ˆ

    =

    = ∑∑

    ∑2

    2

    1

    21

    1

    1

    1

    111

    i

    i

    i

    i

    i

    i

    m

    m

    t t 

    t m

    t t t  A A MML

    L

  • 8/19/2019 Ch04_Orthogonality

    22/34

     

     Fitting a straight Line (2/2)

    =

    =

    i

    i

    i

    i

    i

    m

    m

    bt 

    b

    b

    b

    b

    t t t b A

    ML

    Lv2

    1

    21

    111

    Solve :

     Dand C  for bt 

    b

     D

    t t 

    t m

    i

    ii

    i

    i

    i

    i

    i

    i

    i

    i

    =

    ∑∑

    ∑2

    The best

    ( )∑=

    −+==−

    m

     x

    ii   b Dt C eb x A1

    222

    min  vvv

    ( ) DC  x   ,ˆ  =

     

     Fitting a Parabola

    2 Et  Dt C    ++

    =++

    =++

    =++

    mmm   b Et  Dt C 

    b Et  Dt C 

    b Et  Dt C 

    2

    2

    2

    22

    1

    2

    11

    MM

    =

    2

    2

    22

    2

    11

    1

    1

    1

    mm   t t 

    t t 

    t t 

     AMMM

    =

     E 

     D

     xv

    =

    mb

    b

    b

    bM

    v2

    1

     x for b A x A A  T T  ˆˆ

    v=

  • 8/19/2019 Ch04_Orthogonality

    23/34

     

    Orthogonal Bases and Gram-Schmidt

    Def : The vector are orthogonal if

    when ever i   ≠ j .

    nqqq  vvv,...,,

    21   0= jT 

    i   qq  vv

    Claim : If nonzero vectors are orthogonal

    then they are independent.nqqq

      vvv,...,,

    21

    Proof 

     

    Orthogonal Matrix

    Def : The vector are orthonormal

    if 

    nqqq  vvv,...,, 21

    =

    ≠=

     jiif 

     jiif qq  j

    i,1

    ,0vv

    A matrix Q (m×n) with orthonormal columns satisfies

    [ ]   I qqq

    q

    q

    q

    QQ n

    n

    T =

    =

    =

    1000

    0010

    0001

    21

    2

    1

    L

    MMM

    L

    L

    vL

    vv

    vM

    v

    v

    When Q is a square matrix, QT Q = I means that QT = Q-1.In this case, Q is called an orthogonal matrix.

  • 8/19/2019 Ch04_Orthogonality

    24/34

     

     Angle Between Two Vectors

    π  θ  θ     ≤≤⋅

    =   0,||||||||

    cosvu

    vu

    Sol:Sol:Sol:Sol:

     

     Rotation Matrix

    Sol:Sol:Sol:Sol:

      −=

    θ  θ  

    θ  θ  

    CosSin

    SinCosQ

  • 8/19/2019 Ch04_Orthogonality

    25/34

     

     Reflection Matrix

    −=

    10

    011Q

    (x,y)(-x,y)

    =

    01

    102Q

    (x,y)

    (y,x)45°°°°

     

    Orthonormal Columns

    Claim : If Q has orthonormal columns i.e. QT Q = I , then

    (i)

    (ii)

     x xQ  vv=

    ( ) ( )   y x yQ xQ   T T   vvvv=

    Proof 

  • 8/19/2019 Ch04_Orthogonality

    26/34

     

     Projection Using Orthonormal (1/3)

    Bases : Suppose the basis vector are orthonormal

    [ ]   I QQwithqqqQ   T n   ==  vvv,...,, 21

    The least squares solution of b xQvv

    =

    bQ xbQ x I bQ xQQ  T T T T   vvvvvv

    =⇒=⇒=

    The projection vector

    b

    q

    q

    qqqq

    n

    nv

    vM

    v

    vv

    Lvv

    =  2

    1

    21

    bQQ xQ p  T 

      vvv==

     

     Projection Using Orthonormal (2/3)

    =

    bq

    bq

    bqqqq

     p

    n

    n

    vvM

    vv

    vvv

    Lvv

    v   2

    1

    21

     real 

    ( ) ( ) ( )bqqbqqbqq   T nnT T 

      vvvvvvvvv+++=   ...2211

    The projection vector

    ( )qbqa

    ab

    a

    aa

    a

    ba

    aaa

    ba p

    vvvv

    vv

    v

    vv

    v

    vv

    vvv

    vvv

      

     ==

    =

    2

    bv

     pvθ  

    av

    θ  

    θ  

    Cosb

    CosbqbqT 

    v

    vvvv

    =

    =

  • 8/19/2019 Ch04_Orthogonality

    27/34

     

     Projection Using Orthonormal (3/3)

    are orthonormalnqqq  vvv,...,,

    21

    ( ) ( ) ( )bqqbqqbqq p   T nnT T 

      vvvvvvvvvr+++=   ...2211

    The projection matrix P = QQT 

    When Q is square matrix (m = n)

    The subspace (C (Q)) is the whole vector space Rn and

    QT = Q-1, which is the exact solution

    to

    [ ]nqqqQ  vvv

    ,...,,21

    =

    bQbQ x  T 

      vvv   1−==

    b xQvv

    =

    In this case, P = QQT = QQ-1 and the projection of is

    itself. i.e., Therefore,

    bv

    bv

    b p vv =

    bqqbqqbqqb  T 

    nn

    T T   vvvvvvvvvv

    +++=   ...2211

     

    The Gram-Schmidt (Orthogonalization) Process (1/2)

    Given n independent vectors . We want to

    find n orthonormal vectors with the same spannaaa

      vvv,...,,

    21

    nqqq  vvv,...,, 21

    2

    2212122

    1

    1111

    )(.2

    .1

     A

     Aqthenqaqa A

     A

     Aqthena A

    T v

    vvvvvvv

    v

    vvvv

    =−=

    ==

    2av

     pv

    1

    qv

    2 Av

  • 8/19/2019 Ch04_Orthogonality

    28/34

     

    The Gram-Schmidt (Orthogonalization) Process (2/2)

    3

    3

    3

    23213133   )()(.3

     A

     Aqthen

    qaqqaqa A  T T 

    v

    vv

    vvvvvvvv

    =

    −−=

    ni for qaqa Ageneral In

    i

     j

     jiT 

     jii   ,...2,1)(,1

    =−=   ∑=vvvvv

    3av

    1qv

    3 A

    v

    2qv

    spans the same plane with and , then it is also

    orthogonal with and .3 Av

    1qv

    2qv

    1qv

    2qv

     

     Independent Non-orthogonal Vectors (1/2)

    Sol:Sol:Sol:Sol:

    −=

    =

    −=

    3

    3

    3

    ,

    2

    0

    2

    ,

    0

    1

    1

    321   aaa  vvv

  • 8/19/2019 Ch04_Orthogonality

    29/34

     

     Independent Non-orthogonal Vectors (2/2)

     

    The Factorization A = QR (1/4)

    Given independent vector :

    Gram-Schmidt constructs :321

      ,,   aaa  vvv

    321  ,,   qqq  vvv

    1av

    1 Av

    1qv

    1. , and span the subspace

    2. , and span the same subspace3. , and span the same subspace.

    Therefore, we can have

    21,aa

      vv

    21, A A

    vv

    21,qq

      vv

    321  ,,   aaa  vvv

    321   ,,   A A Avvv

    321   ,,   qqq  vvv

  • 8/19/2019 Ch04_Orthogonality

    30/34

     

    The Factorization A = QR (2/4)

    [ ]321   ,,   aaa A  vvv

    =   [ ]321   ,,   qqqQ  vvv

    =

     A Q

    [ ] [ ]

    =

    33

    3222

    312111

    321321

    00

    0,,,,

    aq

    aqaqaqaqaq

    qqqaaaT 

    T T 

    T T T 

    vv

    vvvv

    vvvvvv

    vvvvvv

     R (upper triangular)

    In general, from independent vectors

    Gram-Schmidt construct we can have A = QRnaaa

      vvv,...,,

    21

    nqqq  vvv,...,, 21

    [ ] [ ] Rqqqaaa 321321   ,,,,  vvvvvv=

     

    The Factorization A = QR (3/4)

     R IRQRQ AQQR A  T T 

    ===⇒=

    1111111   aq Aaq A A  T  vvvvvvv

    =⇒==1qv   1a

    v

    ( )

    ( )  222221212

    1212222

    aq Aq Aqaqa

    qaqaq A A

    T T 

    vvvvvvvvv

    vvvvvvv

    =∴+=⇒

    −==

    > 0

    ( ) ( )

    ( ) ( )  333332321312

    2321313333

    aq Aq Aqaqqaqa

    qaqqaqaq A A

    T T T 

    T T 

    vvvvvvvvvvvv

    vvvvvvvvvv

    =∴++=⇒

    −−==

    > 0

    Therefore, the diagonal elements of R are

    n

    nn

    T T aq Aaq Aaq A

      vvvvvvvvv===   ,...,,

    222111

  • 8/19/2019 Ch04_Orthogonality

    31/34

     

    The Factorization A = QR (4/4)

     R is upper-triangular with positive diagonal elements

     R is invertible. (n nonzero pivots)

    The least squares solution to is satisfyingb x Avv

    =   xv

     

     Analysis of a Network (1/2)

    Set up a system of linear equations to represent the network.

    Then solve the system.

    Sol:Sol:Sol:Sol:

    20

    1010 x1

     x2   x3

     x4

     x5

  • 8/19/2019 Ch04_Orthogonality

    32/34

     

     Analysis of a Network (2/2)

     

     Analysis of a Electrical Network

    Determine the currents I 1, I 2, and I 3 for the electrical network.

    Sol:Sol:Sol:Sol:

  • 8/19/2019 Ch04_Orthogonality

    33/34

     

     Forming Uncoded Row Matrices

    Write the uncoded row matrices of size 1×3 for the message

    “MEET ME MONDAY”.

    Sol:Sol:Sol:Sol:

    [ ] [ ]025141415

    1305130205513

    M E E T __ M E __ M

    O N D A Y __

     

     Encoding a Message

    Use the following invertible matrix

    Sol:Sol:Sol:Sol:  

    −−

    =

    411

    311

    221

     A

  • 8/19/2019 Ch04_Orthogonality

    34/34

     

     Decoding a Message

    Use the inverse matrix

    Sol:Sol:Sol:Sol:

    [ ]

    −−

    =

    100

    010

    001

    411

    311

    221

     I  A

    [ ]

    −−

    −−−

    −−−

    =−

    110

    561

    8101

    100

    010

    0011

     A I