光子晶體原理與計算 (ii) 光的負折射及異常傳播 (negative refraction and anomalous...

38
光光光 光光光光光 (II) 光光光光光光光光光光 (Negative refraction and anomalous propagation of light) 光光光 光光 (Photonic crystal lenses) 光光光光光 (Subwavelength focusing) Pi-Gang Luan ( 欒欒欒 ) Wave Engineering Lab ( 欒欒欒欒欒欒欒 ) Institute of Optical Sciences National Central University ( 欒欒欒欒欒欒欒欒欒欒欒 )

Upload: norman-sullivan

Post on 31-Dec-2015

279 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

光子晶體原理與計算 (II)

光的負折射及異常傳播 (Negative refraction and anomalous propagation of light)

光子晶體透鏡 (Photonic crystal lenses)

次波長聚焦 (Subwavelength focusing)

Pi-Gang Luan ( 欒丕綱 )Wave Engineering Lab ( 波動工程實驗室 )

Institute of Optical Sciences

National Central University

( 中央大學光電科學研究所 )

Page 2: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

負折射 (Negative Refraction)

西元 1968 年由蘇聯科學家V. G. Veselago 提出 “左手介質” (Left-handed materials) 理論

西元 2000 年 , 美國物理學家D. R. Smith 做出 “人工的” (artificial) 左手介質

同年 , 英國物理學家 John. B. Pendry 在 Phys. Rev. Lett. 提出 “完美透鏡” 構想 , 而日本 科學家 M. Notomi 仔細分析了光子晶體在 “非長波極限” 下的光傳播行為

近年 , “ 光子晶體負折射” 與 “次波長成像” 成為熱門的研究領域

Page 3: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Left-Handed MaterialsLeft-Handed Materials

D. R. Smith et. al., Physics Today, 17, May (2000).

Phys. Rev. Lett. 84, 4184 (2000) ; Science, 292, 77 (2001)

Page 4: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

The The Building BlocksBuilding Blocks of LHM of LHM

2

2( ) 1 p

2

2 20

( ) 1F

Electric DipolesElectric Dipoles Magnetic DipolesMagnetic Dipoles+

Page 5: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

左手介質的負折射機制 : TM 波

0, 0

, , , t t n nE H B D 在邊界連續2

* | |Re

8 8

c c

kS E H

Page 6: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

兩種負折射的比較

左手介質 光子晶體 ( 利用特殊的色散特性 )ε < 0, μ < 0利用

Page 7: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Negative Refraction by LHM: Beam Propagation

Page 8: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Negative Refraction of PC: Beam propagation

Page 9: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

完美透鏡 ( Perfect Lens)

J. B. Pendry, Phys. Rev. Lett. 80, 3966 (2000)

0, 0, 0n

“All this was pointed out by Veselago some time ago. The new message in this Letter is that, remarkably, the medium can also cancel the decay of evanescent waves. The challenge here is that such waves decay in amplitude, not in phase, as they propagate away from the object plane. Therefore to focus them we need to amplify them rather than to correct their phase. We shall show that evanescent waves emerge from the far side of the medium enhanced in amplitude by the transmission process.”

vector (phase velocity)k

Poynting vector (energy flow)First proposed by V. G. Veselago (1968)

sf1 f2

Page 10: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

表面電漿子 (Surface-Plasmon-Polaritons (SPP))

SPP exists whenε<0 or μ<0 in the blue region

Page 11: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Subwavelength Focusing EffectSubwavelength Focusing Effect Surface-Plasmon-Polariton (SPP) Surface-Plasmon-Polariton (SPP)

Page 12: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

對 “負折射” 與 “完美透鏡” 的質疑對 “負折射” 與 “完美透鏡” 的質疑

• Negative Refraction Makes a Perfect Lens

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

• Left-Handed Materials Do Not Make a Perfect Lens

N. Garcia et al., Phys. Rev. Lett. 88, 207403 (2002)

• Perfect lenses made with left-handed materials: Alice’s mirror?

Daniel Maystre and Stefan Enoch, J. Opt. Soc. Am. A, 21, 122 (2004)

Page 13: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Is it Possible?Is it Possible?

• ““Left-Handed Materials Do Not Make a Perfect Lens”, ”, N. Garcia and M. Nieto-Vesperinas, PRL 88, 207403 (2002)

• “Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous”, P.M. Valanju, R. M. Walser, and A. P. Valanju, PRL 88, 187401 (2002)

Page 14: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Negative RefractionNegative Refractionof Modulated of Modulated EM WavesEM WavesAPL 81, 2713 (2002)APL 81, 2713 (2002)

Page 15: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Simple ExplanationSimple Explanation

Page 16: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

斯乃爾定律 (Snell’s Law)

1 1 2 2' or sin siny yk k n nc c

Page 17: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

一般晶體 ( 方解石 Calcite) 所導致的負折射

http://arxiv.org/abs/cond-mat/0312125 ( 游漢輝教授等 )

Page 18: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

能量速度 (Energy velocity) 與 群速度 (Group velocity)

spacetimee

spacetimeU

S

vEnergy velocity :

( )g kv kGroup velocity :

e gv vIt can be shown that

Wave energy flows along the normal direction of the constant frequency curve (surface)

Page 19: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

等頻率曲線 (Constant Frequency Curve)Square Lattice v.s. Triangular Lattice

Page 20: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Subwavelength Focusing by PCSubwavelength Focusing by PC

Page 21: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

All-angle negative refraction without negative effective index Chiyan Luo, Steven G. Johnson, and J. D. Joannopoulos, J. B. Pendry, Phys. Rev. B 65, 201104 (2002)

See also:

Phys. Rev. Lett. 90, 107402 (2003)Phys. Rev. B. 67 235107 (2003)Phys. Rev. B. 68 045115 (2003)

Page 22: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

“Negative refraction and left-handed behavior in two-dimensional photonic crystals” S. Foteinopoulou and C. M. Soukoulis

Page 23: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

次波長成像真的需要負折射嗎 ?

L. S Chen, C. H. Kuo, and Z. Ye, Phys. Rev. E 69, 066612 (2004)

Z. Y. Li and L. L. Lin, Phys. Rev. B 68, 245110 (2003)

S. He, Z. Ruan, L. Chen, and J. Shen, Phys. Rev. B 70, 115113 (2004)

Page 24: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Structure and Parameters

0

Dielectric cylinders in air, square lattice

(lattice constant )

Parameters: 14, 1, 0.3

The square lattice has been rotated by 45 .

Each layer contains 50 cylinders.

There are 8 layers in

a

r a

this structure.

Interlayer distance:

2 / 2 0.707

Source-surface distance 0.5

Working frequency (dimensionless) :

/(2 ) / 0.192

ˆE-polarized waves ( )

d a a

a

a c a

E

E z

Page 25: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Increasing the interlayer distance

1.5d 2d 2.5d 3d

d=0.707a

Page 26: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Decreasing the interlayer distance

d-2D d-5D d-8D d-10D

d = 0.707a

r = 0.3a

D = (d-r)/10

Page 27: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Negative Refraction?

See also Phys. Rev. E 70, 056608 (2004)  

Phys. Rev. B 70, 113101 (2004)

Page 28: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

大角度入射時 , 正方晶格光子晶體中的負折射現象Square lattice, rotated by 45˚

73˚ incidence

Page 29: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

負折射現象—三角晶格

Page 30: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

光子晶體透鏡 –三角晶格

Page 31: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

相位波的超光速傳播現像 (Superluminal propagation of phase wave)

Page 32: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

異常反射 (Anomalous Reflection)

Page 33: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Beyond the Long-wavelength LimitBeyond the Long-wavelength Limit

a/λ= 0.49 a/λ= 0.58

Page 34: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Convex Photonic Crystal Lens (Triangular Lattice)

a/λ= 0.49 a/λ= 0.58

Page 35: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Concave Photonic Crystal Lens (Triangular Lattice)

a/λ= 0.49 a/λ= 0.58

Page 36: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Negative Refraction by PC

• Subwavelength imaging does not imply negative refraction

• Anomalous refraction, anomalous reflection and strong anisotropy are common features for wave propagation in artificial media beyond the long-wavelength limit

• Mesoscopic phenomena can happen in both nanoscale world and macroscopic world, only the relative size between the wavelength and the wave-environment interaction range is important

Page 37: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Wave-Environment Interaction in Mesoscopic World

General Features

• Wave coherence is important• Complex boundaries or many scatterers • Wavelength ~ Mean scattering distance (Mean free path)• Scattering strength (coupling constant) cannot be too small• Multiple scattering (the bare waves are repeatedly scattered)• The renormalized wave can be very different from the bare

waves• The actual size is irrelevant, the relative size is the key

parameter. So “Mesoscopic” does not imply “Nanoscale”• Similar phenomena can happen in quantum and classical

(electromagnetic and acoustic) systems• Wave equations + Boundary conditions = Physics

Page 38: 光子晶體原理與計算 (II) 光的負折射及異常傳播 (Negative refraction and anomalous propagation of light) 光子晶體透鏡 (Photonic crystal lenses) 次波長聚焦

Wave Propagation in Periodic Structures — Electric Filters and Crystal Lattices

“Waves always behave in a similar way, whether they are longitudinal or transverse, elastic or electric.

Scientists of the last (19th) century always kept this idea in mind.”

--- L. Brillouin