화학기상증착공정 - sogang...

55
W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes 화학기상증착공정 I. 화학기상증착 II. 실리콘 에피 성장 III. 저압화학기상증착 IV. 플라즈마 화학기상증착 1

Upload: trannga

Post on 03-Feb-2018

248 views

Category:

Documents


7 download

TRANSCRIPT

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    I.

    II.

    III.

    IV.

    1

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    I. (CVD)

    1. gas gas gas substrate gas

    1) gas (1) thermal deposition (2) plasma deposition (3) photo (laser, UV) deposition

    2) (1) APCVD (2) LTCVD (3) LPCVD (4) PECVD (5) PCVD

    2

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3) (1) , , .

    (2) poly-silicon, Si3N4, SiO2 .

    (3) Si3N4, SiO2 epilayer LTCVD

    4) (1) (, ) (2) (3)

    .

    3

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    APCVD

    Thin Film Reaction Gas (carrier) Temperature () Growth Rate

    (nm/min) Throughput (wafer/hr)

    Epitaxial Si

    SiCl4 (H2)/H2

    SiHCl3 (H2)/H2 SiH2Cl2 (H2)/H2

    SiH4 (H2)/H2

    1125~1120 1100~1150 1050~1100 1000~1075

    500~1500 500~1500 500~1000 100~300

    -

    Poly Si SiH4 (H2) 850~1000 100 40

    Si3N4 SiH4 /NH3 (H2) 900~1000 20 40

    SiO2 SiH4 /O2 (H2) 200~500 100 160

    4

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    LPCVD

    Thin Film Reaction Gas (carrier) Temperature () Growth Rate

    (nm/min) Throughput (wafer/hr)

    Epitaxial Si SiH2Cl2 (H2)/H2 1000~1075 100 - Poly Si 100% SiH4 (0.2 torr) 620 100 100

    Si3N4

    23% SiH4 (H2) (0.1 torr)

    SiH2Cl2 /NH3 (0.3 torr)

    640

    800

    19

    4

    150

    100

    SiO2

    SiH2Cl2 /N2O

    900 8 -

    SiO2 SiH4 /O2

    SiH4 /PH3 /O2 (0.7 torr)

    450 450

    10 12

    100 50

    5

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    PECVD

    Thin Film Reaction Gas (carrier) Temperature () Growth rate

    (nm/min) Throughput (wafer/hr)

    Si3N4 SiH4/NH3(N2)

    (0.3 torr) 300 10 -

    SiO2

    SiH2Cl2 /N2O

    250 84 -

    a-Si SiH4 /H3 (0.1 torr)

    300 6 -

    6

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2. CVD 1)

    () (torr)

    100~1200 0.1~760 , ,

    , RF, , , 1 , W-Si, W-Mo 1 , WF3, MoF3

    7

    (1) APCVD LPCVD growth rate uniformity

    (2) heating methods hot wall : electrical heating, IR Lamp cold wall : RF heating

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) LTCVD

    .

    (1) gas gas flow gas

    (2) CVD (3)

    / SiH4/PH3

    8

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    CVD

    9

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3) (photo CVD) (1) (Si3N4 : photo nitride) (2) defect (a-Si) (3) PCVD

    10

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    (4)

    2200 photon gas

    Hg spectrum 2537 photon chamber 10 torr .

    free radical .

    .

    243Hgh

    34 H12NSiNH4SiH3 ++

    HgHNHNHHg

    HgHSiHSiHHgHgHgh

    )P(Hg)S(Hgh

    23*

    34*

    *

    +++

    +++

    +

    +

    11

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    4) CVD

    (1) LTCVD-NP: PSG, SiO2,BSG (700),

    (3) LPCVD-LT: SiO2, PSG (700)

    (5) PECVD-LT, LP: SixNyHz

    (

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    1.

    epitaxial arranged upon

    1)

    (1)

    (2)

    (3)

    (4) defect

    2) : 0.3~ 20

    3) : 0.005~10 cm

    II. (Silicon Epitaxy) 13

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    4) (1) (2) linear IC (3) bipolar (4) microwave (5) image sensor (6) CMOS IC

    5) : , , autodoping, out-diffusion, , buried layer pattern 6) : , , , , , ,

    , , , 7) : homo epitaxy hetero epitaxy

    14

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2. 1)

    (1) 1960 .

    (2) uniformity, repeatability autodoping .

    (3) cylinder barrel type throughput (1), (2) .

    15

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) LPCVD

    (1) , .

    (2) , .

    (3) .

    3)

    (1)

    SiC susceptor cold wall

    (2)

    .

    16

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    17

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3. 1)

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    18

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) SiH2Cl2 epitaxy

    19

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3) (1) Grove model:

    20

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    (2)

    )exp(

    control transfer mass

    controlreaction surface

    )]([

    )]([)1(

    )(

    0

    1

    1

    11

    2

    1

    /kTEKKYCC

    /NhCV

    /NKCV

    NChK/hK

    NFV

    ChK/hKF/hK/CC

    CKFCChF

    aS

    TG

    GG

    SG

    GGSGS

    GGSGS

    GSGS

    SS

    SGG

    ==

    +==

    +=+=

    ==

    21

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    5) (Grove ) (1)

    : .

    22

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    (2)

    23

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    eGG

    G

    e

    L

    GG

    RL

    DDh

    RL

    ULLdxx

    Lx

    Uxx

    Dh

    23

    32

    32)(1)(

    )(

    0

    ==

    ===

    =

    (3)

    : , :

    U: , DG:

    L: susceptor,

    ULRe =

    24

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    : 0 .

    , , Re

    Re hG

    U L .

    L CG .

    susceptor 10~20.

    eR

    L32

    =

    GC

    GC

    (4)

    25

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    4.

    0.2~0.3

    0.4~3.0

    0.4~2.0

    0.4~1.5

    950~1.050

    1,050~1,150

    1,100~1,200

    1,150~1,2500

    ()

    < 2 SiH4=Si+2H2 , Pyrolysis

    < 5 SiH2Cl2 +H2=Si+2HCl, Pyrolysis

    SiH4

    SiH2Cl2

    5~10 SiHCl3+H2=Si+3HCl, Reduction

    SiHCl3

    5~10 SiCl4+2H2=Si+4HCl, Reduction

    SiCl4

    ( )min/m

    26

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    1) SiCl4 (1)

    HCl dopant auto- doping .

    (2) .

    (3) .

    (4) .

    (5) .

    27

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) SiH4

    (1) , ,

    (2) HCl .

    (3) .

    3) SiH2Cl2

    (1) SiH4~SiCl4

    (2) 23 .

    (3) SiH4 .

    28

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    7. 1) : B2H6, PH3, AsH3

    (1) SiH4 : 0.1 % of H2

    (2) C = 5*1015 /cm3

    (1 cm N-type)

    (3) dopant

    2)

    SDG

    ODGDD

    CRF/CCDF

    ==

    2

    1 )(

    29

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3) : (1) : (2) :

    ) (

    ) (

    SD

    OD

    CC

    =

    DG

    GDSD /DRv

    CC+

    =

    30

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    III. (LPCVD) 1. 1)

    throughput . gas flow rate (H2 : 250 /min). RF .

    2) throughput . gas flow rate . system .

    3) LPCVD ( 3-2) torr 1000 . . wafer to wafer .

    31

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    32

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    33

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2.

    R : , A : , Ea : ,

    Pa, Pb, Pc Pn :

    1)

    2)

    3)

    4)

    5)

    nbaa PPPkTEAR )/exp(=

    34

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    Si3N4 SiO2

    SiH2Cl2, NH3 SiH2Cl2, N2O

    () 750 900

    0.7 ~ 1.5 % 1.0 ~ 1.6 %

    1.0 ~ 1.6 % < 2 %

    2.0 1.45

    48% HF (/sec) 2.5~3.5 350~500

    35

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    1)

    36

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) wafer

    37

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3) , , SiO2

    38

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3. 1)

    3

    : 610

    : 625

    : 638

    (a) 100 cc/min, 344 mHg

    (b) 56 cc/min, 226 mHg

    (c) 29 cc/min, 138 mHg

    39

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) 600 , 600

    40

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    41

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    4.

    1)

    SiH2Cl2 NH3 inlet outlet

    42

    : CVD Si3N4 SiO2

    Si3N4 CVD SiO2 thermal SiO2

    1.98 1.46 1.46 1.46

    7.0 4.25 3.7 3.8

    (g/cm3) 2.8 2.1 2.25 2.25

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    43

    2) gas : SiH4, SiH2Cl2, CO2, N2O

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    44

    : ,

    :

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    IV. (PECVD)

    1.

    1)

    hot plasma : arc discharge

    cold plasma : low pressure glow discharge

    PECVD

    2)

    (300 )

    .

    stoichiometry .

    uniformity .

    45

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2. PECVD glow

    1)

    RF plasma

    46

    )/log(2 ie

    efp mTMTe

    kTVV =

    e : , m : , Te : M : , Ti : , Vf : floating potential

    ** ion sheath (dark space) : ion

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    ion sheath

    47

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2) (radical)

    SiH4 + N2O N2O SiH4 + CO2

    CO2 SiO2 . Si-rich SiO2 . SiH4 + N2O SiO2

    .

    3) , ,

    OCOmole/kcal127COONmole/kcal40ON

    eXReRX

    2

    22

    ++++

    +++

    NONmole/kcal115ON2 ++

    48

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    3. 1) : 50 kHz13.56 MHz matching 2) : 0.15 torr,

    49

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    4.

    1)

    gas : SiH4 + NH3, SiH4 + N2 : 277(N-N), 110(H-NH2), 90(H-NH)

    79(H-N) kcal/mole

    : , , , , ,

    grain , stress strain

    , gas , gas flow rate, ,

    ,

    50

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    51

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    52

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    53

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    2)

    gas : SiH4 N2O, O2 CO2 40(O-N2), 119(O-O), 127(O-CO) kcal/mole

    :

    1) -

    2) passivation layer

    3) low capacitance

    54

  • W. Y. Choi, B.-G. Park, and J. D. Lee, Fundamentals of Silicon IC Processes

    55

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30 III. (LPCVD)Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44IV. (PECVD)Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51Slide Number 52Slide Number 53Slide Number 54Slide Number 55