17 09-2013 peaceful usage of nuclear energy

of 72 /72
Peaceful usage of nuclear energy Konstantin German II Letnia Szkoła Energetyki i Chemii Jądrowej

Author: konstantin-german

Post on 09-May-2015

2.336 views

Category:

Education


2 download

Embed Size (px)

DESCRIPTION

Lecture 2 - K.German at the European Summer school on energentcs and nuclear medicine. Warsaw university. 2013

TRANSCRIPT

  • 1.Peaceful usage of nuclear energy Konstantin German II Letnia Szkoa Energetyki i Chemii Jdrowej

2. Peacefulusageofnuclearenergy KonstantinGerman FrumkinInstituteofPhysicalChemistryandElectrochemistry ofRussianAcademyofSciences(IPCERAS),Moscow,Russia & MedicalinstituteREAVIZ IISummerschoolofEnergeticandNuclearChemistry BiologicalandChemicalResearchCentreUW 3. Discoveryofradioactivityand estimationofitsimportance Becquerel In1896foundout thatUraniumore isemittingsome newkindofrays. CurieandSklodowska Pierre Curie (a famous French physicist) and his young Pole assistant (radio)chemist Maria Sklodowska in 1898 were the first to separate a new element, Ra. They found out that Radium samples are more hot compared to the environments as long as for many months. They concluded that radioactivity is new and very important source of energy and proposed its usage for medical, pharmaceutical, , , purposes. Some other applications drugs and creams were considered important. VernadskyinRussiain1920predictedthatRa andalliedmattercouldbeaveryimportant keyfornewenergeticintheWorldscale. MARIESKODOWSKACURIE BYGRZEGORZZAJC 4. In1945,twoexplosionsinJapanhave demonstratedthepowerofatomwith absoluteevidence HBOMBTEST 5. DualityofNuclearTechnology HiroshimaandNagasaki,Japan,1945Obninsk,Russia,1954 6. IAEA startup - 8 December 1953 US President Dwight Eisenhower was not a scientist but an important governor. At the United Nations Meeting in New York in his Atoms For Peace speech he called for the institution of a UN agency to maximize the contribution of nuclear technology to the world while verifying its peaceful use. 7. Peacefulusesofatomicenergy Nuclearpowerplants(electricity production,thermalsource, waterdistillationstations) Nuclearreactorpropulsion (icebreakers,specialplants) Radioisotopesources(closed RITEGsetc.,open) Nuclearmedicine(radiationuse, radioisotopeuse radiodiagnosticsand radiotherapy) Nuclearexplosions peaceful uses(historicalandprospective) Supervised by IAEA : that seeks to promote the peaceful use of nuclear energy, and to inhibit its use for any military purpose, including nuclear weapons Missions 3.1 Peacefuluses 3.2 Safeguards 3.3 Nuclearsafety 3.4 Criticism 8. FirstNPP AtthetimeofDwight Eisenhower speechonDec.1953the firstNPPwas85%constructedinObninsk,Russia,thestart updonein1954 ConstructionstartedonJanuary1,1951,startupwasonJune 1,1954,andthefirstgridconnectionwasmadeonJune26, 1954providingthecityofObninskwithelectrisity.Foraround 4 years,tillopeningofSiberianNuclearPowerStation, Obninskremainedtheonlynuclearpowerreactorinthe USSR;thepowerplantremainedactiveuntilApril29,2002 whenitwasfinallyshutdown. Thesinglereactorunitattheplant, AM1 (AtomMirny,or "peacefulatom"),hadatotalelectricalcapacityof6 MWand anetcapacityofaround5MWe.Thermaloutputwas30 MW. Itwasaprototypedesignusingagraphitemoderatorand watercoolant.ThisreactorwasaforerunneroftheRBMK reactors. 9. NuclearFuelCycle= thebackboneofnuclear industryand thekeyforpeaceful useofnuclearenergy ClosedNuclearFuel Cyclebasedon Fastreactorsand U238(orMOX) fuel=prospective forlongtermuseof nuclearenergy 10. Nuclearreactoris adevicetoinitiate andcontrolasustainednuclearchain reaction.Nuclearreactorsareusedat: Nuclearpowerplants(NPP) forgenerationelectricity Inpropulsionofships. Heatfrom nuclearfission ispassedtoaworkingfluid(wateror gas),whichrunsthrough turbines.Theseeitherdrivea ship's propellers orturn electricalgenerators.Nuclear generatedsteaminprinciplecanbeusedforindustrialprocess heat,fordistrictheatingorforwaterdistillation. Somereactorsareusedtoproduceisotopesformedicaland industrialuse,orforproductionof plutonium forweapons. Somearerunonlyforresearch. 11. NPPsaredifferentinthenatureof NuclearReactorType: Thermalneutronsreactors Waterwater (WWER) Boilingwater (BWR) Heavywater Gascooled (MAGNOX,AGR) Graphitewater Hightemperaturegascooled Heavywatergascooled Heavywatercooled Boilingheavywater Fastneutronsreactors Sodiumcooled(BN300, 600,BN800) PborPbBicooled(BN 1200) OTHERREACTORTYPESEXIST Moltensalt Homogeneous Researchreactors 12. USA+UK 80 RUSSIA 35 France 4 13. CivilNPPNuclearreactorsandNetOperatingCapacity intheWorld(1954 2011),GWe 14. CivilNPPReactorstartupsand shutdownsintheworld(1954 2011) units 15. GlobalGrowthofNuclearPowerinProgress(2010) www.spiegel.de/international/spiegel/0.1518.460011.10.html 16. NuclearEnergyProvidedin2005 %ofElectricityin:77%in France,55%inBelgium,45%inSouthKorea,20%inUSA 0 10 20 30 40 50 60 70 80 90 France Lithuania Slovakia Belgium Ukraine Sweden Korea Rep. Bulgaria Armenia Slovenia Hungary Finland Switzerland Germany Czech RP Japan U.K. Spain U.S. Russia Canada Romania Argentina South Africa Mexico Netherlands India Pakistan Brazil China* %ofElectricityfromNuclear Percent Source:NEI http://www.nei.org/ 17. TheAFCIistheTechnologyDevelopmentComponentof theU.S.NuclearEnergyProgram TransmutationFuels FastReactors AdvancedSeparations WasteForms Safeguards SystemsAnalysis GridappropriateReactors AFCIResearchCampaigns: * GordonJarvinen VIIIInternationalWorkshop FundamentalPlutonium Properties.September812,2008 18. NPPsinRussia 2012 RussianNPPsproduced 170*109kWt*hour Thefractionofnuclearpowerintotalelectricpower =16%inRussia,oftotalpower=11% 19. Waterwaterreactors WWER1000(31reactorsinoperation) 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 20. Boilingwaterreactor 21. PressurizedWaterReactor 22. Potentialofnuclear Torelise thefullpotentialofUandPubredfromit requiresfastneutronreactors ThestockofdepletedUO2intheworldwhenusedin fastreactorswillprovidetheenergyequivalentto 4X1011 toil http://www.worldnuclearnews.org 23. Fastreactors BN60 BN300 BN600 Shevchenko Phoenix Superphenix BN800 BN1200 project FR=thekeytoreallyclosed nuclearfuelcycle 24. FastreactorsinRussiaandChina Beloyarsk NPPCEFR China Thesinglereactornowin operationisaBN600fast breederreactor,generating600 MWe.(1980 2014) LiquidSodiumisacoolant. Fuel:369assemblies,each consistingof127fuelrodswith anenrichmentof1726%U235. ItisthelargestFastreactor in serviceintheworld.Three turbinesareconnectedtothe reactor.Reactorcore 1.03m tall,Diameter=2.05m. China'sexperimental fastneutronreactor CEFRhasbeen connectedtothe electricitygridin2011 25. Fast BN800 with mixed UO2PuO2 fuel and sodiumsodium coolant will start by 2014 in Russia. FastBN1200reactorwithbreedingratioof1.2 to1.31.35formixeduraniumplutonium oxidefueland1.45fornitridefuel,Mean burnup120MWtXdXkg.BN1200isduefor constructionby2020 http://www.worldnuclearnews.org 26. Developanddemonstratefastreactortechnologythat canbecommerciallydeployed Focusonsodiumfastreactorsbecauseoftechnical maturity Improveeconomicsbyusinginnovativedesignfeatures, simplifiedsafetysystems,andimprovedsystemreliability Advancedmaterialsdevelopment Nucleardatameasurementsanduncertaintyreduction analysesforkeyfastreactormaterials WorkatLosAlamosfocusesonadvancedmaterials development,nucleardatameasurements,andsafety analyses Fast Reactors Program in USA * GordonJarvinen VIIIInternationalWorkshop FundamentalPlutonium Properties.September812,2008 27. WorldprogramfornewNPPs installationsasseenin2009 28. UREX+1a Process Outline TALSPEAK UREX FPEX TRUEX DissolvedFuel LanthanideFPs U,Tc Cs,Sr NonLnFPs Np,Pu,Am,Cm Chopfuelanddissolvein HNO3;UandTcextractedin UREXstepwithTBPin hydrocarbon(HC)solvent Cs/Srextractedwith calixcrownandcrownether inFPEXprocess Transuranicsandlanthanide fissionproductsextractedin TRUEXstepwithCMPOand backextractedfromCMPO withDTPAlacticacidsolution Lanthanidefissionproducts extractedintodi2ethylhexyl phosphoricacidinHCsolvent leavingTRUelementsin aqueousphaseinTALSPEAK process * GordonJarvinen VIIIInternationalWorkshop FundamentalPlutonium Properties.September812,2008 29. Technetium is a Long-term Threat to the Biosphere Technetium is a key dose contributor in Yucca Mountain repository modeling if TRU elements are greatly reduced by UREX+ recycling. The long half-life of Tc (t1/2 = 2.14 x 105 years) and its high mobility and solubility as pertechnetate create a long-term threat to the biosphere. UREX process produces a separated stream of pure uranium and technetium recovering >95% of the Tc in the dissolved LWR spent fuel. Most remaining Tc is found in noble metal inclusions of Mo- Tc-Ru-Rh-Pd found in the undissolved solids (UDS) from the dissolution of the spent fuel in nitric acid. Los Alamos workers have developed an anion exchange process to remove the Tc from the U, recover the Tc by elution with ammonium hydroxide, and convert the pertechnetate to metal or TcO2. Alloys of Tc with UDS metal inclusions, Zircaloy hulls or other metals (e.g., INL Metal Waste Form: Tc, 15% Zr, 85% stainless steel) and also oxide phases with the lanthanide and transition metal fission products are being studied as potential disposal forms. * GordonJarvinen VIIIInternationalWorkshop FundamentalPlutonium Properties.September812,2008 30. Effectofthepowerproductionmode onthehealthofEuropeanpopulation 0 20 40 60 80 100 120 140 160 180 1 2 3 4 5 6 1. Browncoal 2. Blackcoal 3. Gas 4. Nuclearpower 5. Sunlightpower 6. Windpower Lost Years of Life, Manyear per GWt*H produced 31. SmallModularReactors(SMRs) SmallModularReactors (SMRs)arenuclearpower plantsthatsmallerinsize (300MWeorless)than currentgenerationbase loadplants(1,000MWe orhigher). Thesesmaller,compact designsarefactory fabricatedreactorsthat canbetransportedby truckorrailtoanuclear powersite. 32. NPPs&Water locationproblem FukushimaDaiichinuclear Disaster BWRRPV Othercases Corps of Engineers photo of the Fort Calhoun Nuclear Generating Station on June 16, 2011 during the 2011 Missouri River Floods. Vital buildings were protected using AquaDams, a type of waterfilled perimeter flood barriers 33. 36 7 6 13 3 65ReactorsforNPPsUnder Construction byregion: Asia FarEast Asia MiddleEast andSouth EU27 OtherEurope America Sources:IAEAPRIS,MSC2011 34. Nuclearpowered propulsion Nuclearpoweredicebreakersand complexusageships Typhoon3RFVMFsubmarine NimitzUSNavyaircraftcarrier 35. Nuclearpoweredicebreakers Icebreaker Lenin in 1959 was both the world's first nuclearpowered surface ship and the first nuclearpowered civilian vessel. ThesecondwasNS Arktika.Inservicesince1975, shewasthefirstsurface shiptoreachthe NorthPole, onAugust17,1977. NSYamalandTaimyr Installed power: Two OK-900 nuclear reactors (2 171 MW), 90%enriched, zirconiumclad, Uranium fuel. Propulsion: Nuclear-turbo-electric Three shafts, 52 MW (comb.) Speed: 20.6 knots (38.2 km/h) Ice to break : 2.25 m 3.5 m 36. Northernsearoute MapofNorthernSeaRoute Consumeupto200 grammsoffueladaywhenbreakingice. 500 kg of Uranium in each reactor,allowing for up to four years between changing reactor cores 37. OTHERAPPLICATIONS Science&Technology Waterresourcemanagement:Isotopehydrology Pestcontrol:Sterileinsecttechnique Foodsafety:Irradiation Environmentalmanagement:Pollutioncontrol Cancertreatment:Radiotherapy NuclearMedicine:Diagnostics 38. TechnicalCooperationwithIAEA: Addressescriticalproblemsindevelopingnations Contaminateddrinkingwater Infectiousdiseases:TB,AIDS MalariaandSleepingSickness Malnutritionandfoodscarcity Pollution Shortageofknowledgeandskills 39. Radioisotopebattery Nuclearbatteryorradioisotopebatteryisadevicewhichusestheradioactive decaytogenerateelectricity.Thesesystemsuseradioisotopes thatproducelow energybetaparticlesoralphaparticlesofvaryingenergies. Lowenergybetaparticles preventionofhighenergyBremsstrahlung radiation thatwouldrequireheavyshielding. Radioisotopessuchas tritium,Ni63,Pm147,Tc99 havebeentested. Pu238, Cm242,Cm244,Sr90 havebeenused. Twomaincategoriesofatomicbatteries:thermalandnonthermal. Thenonthermalatomicbatteriesexploitcharged and particles.These designsincludethe directcharginggenerators, betavoltaics, the optoelectric nuclearbattery,andthe radioisotopepiezoelectric generator. Thethermalatomicbatteriesontheotherhand,converttheheatfromthe radioactivedecaytoelectricity.Thesedesignsincludethermionic converter,thermophotovoltaic cells,alkalimetalthermaltoelectric converter,andthemostcommondesign,theradioisotopethermoelectric generator. 40. Radioisotopebatteries byradioisotopes Tritium lighteninginphosphors ProductofSNFdissolution Tc99 U235(n,f)Mo99()Tc99m()Tc99 separatedfromspentnuclearfuel (SNF)reprocessingsolutions Pm147 Heartbattery ProductofSNFdissolution Pu238 Np237(n,)Pu238 FromSNF SpaceRTG&RTUbatteries ProductofSNFdissolution Cm242,Cm244 Pu239(n,)Pu240(n,)Pu241(n,)Pu242 SpaceRTG&RTUbatteries SNFdissolution,specialtargets Sr90 U235(n,f)Sr90 Separatedfromspentnuclear fueul reprocessingsolutions,) 41. Attemptsof99Tcapplication inIPCERAS(19751987) Prof. V. Peretroukhin checks the electric battery based on -emission of technetium-99 Electric battery based on b-emission of Tc (1978-1983, O.Balakhovsky) - Sources for eyeball medical treatment and defectoscopy (1983 1993, K. Bukov) Corrosion protection (1960-1975, Kuzina) Antifouling protection (1975 1987, S.Bagaev, S.Kryutchkov, K.German) Tc catalysts at ceramic supports (1975 2000, G. Pirogova) 42. A radioisotopethermoelectricgenerator (RTG, RITEG) isan electricalgenerator thatobtainsitspowerfromradioactivedecay. The heatreleasedbythedecay ofasuitable radioactive materialis convertedinto electricity bythe Seebeck effect usinganarray of thermocouples. RTGshavebeenusedaspowersourcesin satellites, spaceprobes and unmannedremotefacilities,suchasaseriesof lighthouses builtby theformerSovietUnioninsidetheArcticCircle. RTGsareusuallythemostdesirable powersourcefor robotic or unmaintainedsituationsneedingafew hundred watts (orless)ofpowerfor durationstoolongfor fuelcells, batteries,orgeneratorstoprovide economically,andinplaceswhere solar cells arenotpractical. SafeuseofRTGsrequirescontainment ofthe radioisotopes longafterthe productivelifeoftheunit. 43. RTGuse Implantedheart pacemakers The USSRconstructedmany unmannedlighthousesand navigationbeaconspowered byRTGs. Poweredby strontium90 (90Sr),theywereveryreliable andprovidedasteadysource ofpower. Thermalregimeatouter planetinstruments(cars) Now Lighthousesandnavigation beacons Inthepast,small "plutoniumcells"(very small 238PupoweredRTGs) wereusedin implanted heart pacemakers toensurea verylong"batterylife".[9] Asof2004,about90 patientswerealiveandthe batterieswerestillinuse. 44. DislocationofsomeRITEGs lighthousesinRussiaandAntarctica NorthernSeaRoute Antarctica NowadayswhensatellitesystemareusedfornavigationcontrolRITEGsatNSRare considerednormoreusefulandspecialprogramofdecommissioningwasrun 45. DecommissioningofRITEGs partnersimpact 46. Decomission fondings ofRITEG asassistedbythepartners byDec.2012(inunits) 2001 47. RITEGBETTA_MatFADDEYCITE damagedwithfrozenice RITEGBETTA_MatFADDEYCITE damagedwithfrozenice MOSTOFRITEGSWERESHIPPED TORUSSIAN REPROCESSINGFACILITIES 48. SPACEPOWERSYSTEMS(RPS) RPSssafelyenableddeepspaceexplorationand nationalsecuritymissions. RPSsconverttheheatfromthedecayofthe radioactiveisotopePu238intoelectricity. RPSsarecapableofproducingheatandelectricity undertheharshconditionsencounteredindeep spacefordecades. Safe,reliable,andmaintenancefreeinmissionsto studythemoonandalloftheplanetsinthesolar systemexceptMercury. TheMarsScienceLaboratoryrover,Curiosity, launched2011,landedsuccessfullyatMarson August5,2012. 1st missiontousetheMultiMissionRadioisotope ThermoelectricGenerator(MMRTG). TheRPSpoweredNewHorizonsspacecraftisthree quartersofthewaytoaplannedPlutoencounterin 2015 AtMoon COOPERATIONFORSPACEEXPLORATION: Np237forproductionofPu238was providedtoUSDOEbyRussianRT1. Np237isaproductofPOMAYAKRT1 plantthatreprocessRBMK 1000 spentnuclearfuel Cassini'sphotooftheEarth 49. Radioisotopethermoelectric generators A glowingredhotpelletof plutonium238dioxidemadeby USDOEattheDepartment'sof LosAlamosNationalLaboratory tobeusedinaRTGforthe CassinimissiontoSaturn Eachpelletproduces62wattsof heatandwhenthermally isolated,canglowbrilliant orange 10Lcontainerfilledin withmetaltechnetium 99couldproduceabout 1wattofheatenergy duringthetimeupto 212000years 50. RadioisotopeHeaterUnits(RHUs) RHUsusetheheat generatedbyPu238to keepaspacecrafts instrumentswithintheir designedoperating temperatures. Plutoniumisproducedby nuclearreaction: Np237(n,)Pu238 U235 U236 U237 51. RadioisotopeHeaterUnits(RHUs) RadioisotopeHeaterUnits(RHUs) RHUsusetheheat generatedbyPu238tokeepaspacecraftsinstruments withintheirdesignedoperatingtemperatures. InJuneandJuly2003,NASAlaunchedtheMarsexploration rovers,SpiritandOpportunity,toexploreevidenceof wateronMars.EachroverhaseightRHUstokeepthe roverinstrumentswarmduringthecoldMartiannights. TheroverslandedatseparatesitesonMarsinJanuary2004 onaplanned90daymission.Spiritrovedthesurfaceof Marsforover6yearsuntilitbecamestuckinasandtrap. OpportunityisstillexploringtheMartiansurfaceand transmittingdataafter7yearsofoperation.NASAhasalso identifiedseveralnewmissionspotentiallyrequiringRHUs. 52. RTGsandRHUsforspaceexploration ThroughastrongpartnershipbetweentheEnergyDepartment'sofficeofNuclearEnergy andNASA,RadioisotopePowerSystemshavebeenprovidingtheenergyfordeepspace exploration. TheDepartmentofEnergy(DOE)anditspredecessorshaveprovidedradioisotopepower systemsthathavesafelyenableddeepspaceexplorationandnationalsecuritymissions forfivedecades. Radioisotopepowersystems(RPSs)converttheheatfromthedecayoftheradioactive isotopeplutonium238(Pu238)intoelectricity.RPSsarecapableofproducingheatand electricityundertheharshconditionsencounteredindeepspacefordecades.Theyhave provensafe,reliable,andmaintenancefreeinmissionstostudythemoonandallofthe planetsinthesolarsystemexceptMercury.TheRPSpoweredNewHorizonsspacecraftis threequartersofthewaytoaplannedPlutoencounterin2015. DOEmaintainstheinfrastructuretodevelop,manufacture,test,analyze,anddeliverRPSs forspaceexplorationandnationalsecuritymissions.DOEprovidestwogeneraltypesof systems powersystemsthatprovideelectricity,suchasradioisotopethermoelectric generators(RTGs),andsmallheatsourcescalledradioisotopeheaterunits(RHUs)that keepspacecraftcomponentswarminharshenvironments.DOEalsomaintains responsibilityfornuclearsafetythroughoutallaspectsofthemissionsandperformsa detailedanalysisinsupportofthosemissions. SPACEANDDEFENSEINFRASTRUCTURE DOEhassuccessfullyaccomplishednuclearpowersystemmissionsbymaintaininga uniquesetofcapabilitiesthroughhighlyskilledengineersandtechniciansandspecialized facilitiesatDOEnationallaboratories.OakRidgeNationalLaboratoryprovidesunique materialsandhardware.Plutonium238ispurifiedandencapsulatedatLosAlamos NationalLaboratory.IdahoNationalLaboratoryassemblestheencapsulatedfuelintoa heatsourcedesignedtocontainthefuelinpotentialaccidentsituations,integratesthe heatsourceandpowerconversionsystemintothefinalpowersystem,andassurestheir finaldelivery.DOEmaintainsuniqueshippingcontainersandtrailerstosafelytransport componentsandpowersystemsacrosstheDOEcomplexandtouseragencies.DOEalso maintainstheuniqueabilitytoevaluateandcharacterizethesafetyofthesesystems. SandiaNationalLaboratoriesleadsthedevelopmentandmaintenanceoftherequired analyticaltools,database,andcapabilities. Powersystemdesign,development, manufacturing,andnonnucleartestingareperformedbycompetitivelyselectedsystem integrationcontractors. RadioisotopeThermoelectricGenerators(RTGs) TheRTGsystemsareidealfor applicationswheresolarpanelscannotsupplyadequatepower,suchasforspacecraft surveyingplanetsfarfromthesun.RTGshavebeenusedonmanyNationalAeronautics andSpaceAdministration(NASA)missions,includingthefollowing. MarsScienceLaboratoryMission,CuriosityRover TheMarsScienceLaboratoryrover,namedCuriosity,launchedonNovember 26,2011,landedsuccessfullyonMarsonAugust5,2012.ItisthefirstNASA missiontousetheMultiMissionRadioisotopeThermoelectricGenerator (MMRTG).CuriosityiscollectingMartiansoilsamplesandrockcores,andis analyzingthemfororganiccompoundsandenvironmentalconditionsthat couldhavesupportedmicrobiallifenoworinthepast.Curiosityisthefourth rovertheUnitedStateshassenttoMarsandthelargest,mostcapablerover eversenttostudyaplanetotherthanEarth. NewHorizonsMissiontoPluto TheNewHorizonsspacecraftwaslaunchedonJanuary19,2006.Thefastest spacecrafttoeverleaveEarth,NewHorizonshasalreadyreturnedimagesand scientificdatafromJupiterandwillcontinueitsjourneyofthreebillionmilesto studyPlutoanditsmoon,Charon,in2015.Itmayalsogoontostudyoneor moreobjectsinthevastKuiperBelt,thelargeststructureinourplanetary system.DOEsuppliedtheRTGthatprovideselectricalpowerandheattothe spacecraftanditsscienceinstruments. CassiniMissionOrbitingSaturn InJuly2004,theCassinimissionenteredtheorbitofSaturn.Launchedin October1997,theCassinispacecraftusesthreeDOEsuppliedRTGsandisthe largestspacecrafteverlaunchedtoexploretheouterplanets.Itissuccessfully returningdataandimagesofSaturnanditssurroundingmoons,usingabroad rangeofscientificinstruments.ThismissionrequiresRTGsbecauseofthelong distancefromthesun,whichmakestheuseofsolararraysimpractical.The RTGshaveallowedthemissiontobeextendedtwice;themissionisexpectedto lastatleastuntil2017. VoyagerMissiontoJupiter,Saturn,Uranus,NeptuneandtheEdgeoftheSolar System Inthesummerof1977,Voyager1and2leftEarthandbegantheirgrandtourof theouterplanets.BothspacecraftusetwoRTGssuppliedbyDOEtogenerate electricity.In1979,thespacecraftpassedbyJupiter;in1981,itpassedby Saturn.Voyager2wasthefirstspacecrafttoencounterUranus(1986)and Neptune(1989). Voyager1and2arecurrentlyexploringtheheliosheathon theedgeofthesolarsystem,seekingouttheboundaryofinterstellarspace. Voyager1ispresentlythefarthesthumanmadeobjectfromEarth.Itis currentlymorethan11billionmilesfromearth.Bothspacecraftremain operationalandaresendingbackusefulscientificdataafterover35yearsof operation.TheRTGsareexpectedtocontinueproducingenoughpowerfor spacecraftoperationsthrough2025,47yearsafterlaunch. 53. PLANNEDPROGRAMACCOMPLISHMENTS ATUSDOE FY2013 MaintainoperabilityofSpaceandDefensePowerSystemsrelated facilitiestoachieveDOEandWorkforOthersmilestones. ContinuedevelopmentoftheASRGinsupportofapotentialNASA mission. CompletefabricationofPu238fuelatLANLforapotentialNASA mission. MaintaincurrentRPSsafetyanalysiscapabilityandmethodsasnew informationbecomesavailable. Completetheupgradeofanenvironmentalcontrolsystemfor powersystemassemblygloveboxatINL. ContinuetosupportdevelopmentoftheNuclearCyrogenic PropulsionStage(NuclearThermalRocket)withNASAsMarshall SpaceFlightCenter. 54. Peacefuluseofnuclearexplosions Historical(19651988) Prospective Largemeteorite destruction orredirection As part of Operation Plowshare USA and Programs 6&7 in USSR. Objectives: water reservoir development, dam & canal construction. creation of underground cavities for toxic wastes storage Searching for mineral resources with reflection seismology from ultrasmall bombs breaking up ore bodies, stimulating the production of oil and gas, forming underground cavities for storing the recovered oil and gas, gasfire stop. 55. CorrosionprotectionbyTc99 In196676Cartledge,Kuzinaand othershaveshownTctobea morepowerfulcorrosion protectorcomparedtoCrO4 2 Tcimprovesalsochemical resistance,whenaddedasa componentofalloytostainless steel 6mgofKTcO4 addedtowater inhibitscorrosion ofArmcoiron during3months 56. Detectoscopyanddefectoscopy oflightmaterials WatersignsatexUSSR banknotes True, alterationof heavyandlight Forged, onlyheavy Tensometric detector Painted ataglance Samein Tcrays 57. Russian Tc - Transmutation program (1992-2003) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 99Tc(n,)100Tc()100Ru 0,00% 25,00% 50,00% 75,00% 1 2 3 4 5 Irradiation time, days Technetium-99Burnup,% Hanford (USA) 1989 Wootan W Jordheim DP Matsumoto WY Petten (NL) 1994-1998 Konings RJM Franken WMP Conrad RP et al. Dimitrovgrad (Russia) IPC RAS - NIIAR 1999 - 2000 Kozar AA Peretroukhine VF Tarasov VA et al. 6% 18% 34% 65% 10.5 days 193 days 579 days 72 days 260 days 0,67 % = Pessimistic 58. Tc transmutationexperiment(IPCERAS NIIAR,19992008) InIPCRASasetofmetaldisctargets(10x10x0.3mm)prepared andassembledintwobatcheswithtotalweightupto5g. Transmutationexperimentwascarriedoutathighflux SM3reactor(NIIAR,Dimitrovgrad ) 2nd batch: Ft > 2 1015 cm-2s-1 1st batch: Ft=1.3 1015 cm-2s-1 99Tc burnups havemade: 34 6 % and 65 11 % forthe1stand2ndtargetsbatches The high 99Tc burnups were reached and about 2.5 g of new matter transmutation ruthenium were accumulated as a result of experiments on SM3 reactor These values are significantly higher of burnups 6 and 16 % achieved on HFR in Petten earlier 1 ; 2 ; 3 ; 4 7 -2 81 91 - 4 3 2 1 -3 -1 9 12 465666768696 6575 45558595 425262728292 4151617181 44548494 43538393 43 1 91 2 -2 2 6 1415 3 7 816 -4 -5 17 -6 -10 -9 13 -8 1 19 4 10 -7 5 20 11 2118 .5. 59. PreparationofartificialstableRutheniumby transmutationofTechnetium Rotmanov K.etall.Radiochemistry, 50 (2008)408:NewRutheniumisalmost monoisotopic Ru100,ithasdifferent spectralproperties Itisavailableonlytoseveralcountriesthat developnuclearindustry Tctargetmaterial: Tcmetalpowder/Kozar (2008) Tc CcompositeTccarbide /German(2005) 60. Nuclearmedicine Radiodiagnostics Radiotherapy Radiationusefor metastasestreatment, sterilizationofmedical instruments,drugsand clothes Advantages: Nuclearmedicinetests differfrommostother imagingmodalitiesin thatdiagnostictests primarilyshowthe physiologicalfunction ofthesystembeing investigatedas opposedtotraditional anatomicalimaging suchasCTorMRI. 61. Nuclearmedicine Practicalconcernsinnuclear imaging Althoughtherisksoflowlevel radiationexposuresarenotwell understood,acautiousapproach hasbeenuniversallyadoptedthat allhumanradiationexposures shouldbekeptAsLowAs ReasonablyPracticable,"ALARP". Theradiationdosefromnuclear medicineimagingvariesgreatly dependingonthetypeofstudy. Tc99 Amongmanyradionuclides thatwere discoveredformedicaluse,nonewere asimportantasthediscoveryand developmentof Technetium99m. Itwasfirstdiscoveredin1937byC. PerrierandE.Segreasanartificial elementtofillspacenumber43inthe PeriodicTable. Thedevelopmentofageneratorsystem toproduceTechnetium99minthe 1960sbecameapracticalmethodfor medicaluse. Today,Technetium99misthemost utilizedelementinnuclearmedicine andisemployedinawidevarietyof nuclearmedicineimagingstudies. 62. Nuclearmedicine Mo99 Tc99Generator ProblemofMo99 Tc99 generatorinaccessibility UseofLEUforMo99 generatorsproduction Alternativemethodsfor Mo99 Tcsymposiums ItalianTERACHEM (Prof.Mazzi)1985 2010 IST/ISTR(Joshihara,Sekine )1993 2014(Japan, Russia,S.Africa,France) RadiopharmaceuticalSoc. Symp. 63. Radionuclides inNuclearMedicine Nucleardiagnostics PET positronemission computertomography (beta+,T1/2=sechours) Fluor18 SPECT singlephoton emissioncomputer tomography gamma emitters100200keV, T1/2=hoursdays(Tc99m etc) Nucleartherapy Radiation Bettaemittes 2002000 keV, Alphaemitters EC orIEC radionuclides (electroncaptureof internalelectron conversion) 64. Radionuclides forPET 65. Nuclearmedicine PET Morerecentdevelopmentsinnuclear medicineincludetheinventionofthe firstpositronemissiontomography scanner(PET). Theconceptofemissionand transmissiontomography,later developedintosinglephotonemission computedtomography(SPECT),was introducedby DavidE.Kuhl andRoy Edwardsinthelate1950s Theirworkledtothedesignand constructionofseveraltomographic instrumentsattheUniversityof Pennsylvania. Tomographic imagingtechniqueswere furtherdevelopedattheWashington UniversitySchoolofMedicine. PET/CT TheseinnovationsledtofusionimagingwithSPECTand CTbyBruceHasegawafromUniversityofCaliforniaSan Francisco(UCSF),andthefirstPET/CTprototypebyD. W.TownsendfromUniversityofPittsburghin1998. PETandPET/CTimagingexperiencedslowergrowthin itsearlyyearsowingtothecostofthemodalityandthe requirementforanonsiteornearbycyclotron. However,anadministrativedecisiontoapprovemedical reimbursementoflimitedPETandPET/CTapplications inoncologyhasledtophenomenalgrowthand widespreadacceptanceoverthelastfewyears,which alsowasfacilitatedbyestablishing18Flabelledtracers forstandardprocedures,allowingworkatnon cyclotronequippedsites. PET/CTimagingisnowanintegralpartofoncologyfor diagnosis,stagingandtreatmentmonitoring.Afully integratedMRI/PETscannerisonthemarketfromearly 2011 66. SPECT F18,Ga68 Shortlived!!! cyclotron PET 67. PET/CTBetterChoiceThanBoneMarrowBiopsy forDiagnosis,PrognosisofLymphomaPatients ByMedimaging Internationalstaffwriters13Aug2013 Diffusebonemarrowuptakepatternin18F FDGPET/CT.(AandB)Uptakelower than(A)orsimilarto(B)thatinliver wasconsiderednegativeforBMI. (C)Uptakehigherthanthatinliverwas alwayslinkedtoanemiaor inammatory processesandalso considerednegativeforBMI(Photocourtesyof theSocietyofNuclearMedicineandMolecularImaging). Amoreaccuratetechniquefordetermining bonemarrowinvolvementinpatients withdiffuselargeBcelllymphoma (DLBCL)hasbeenidentifiedbyFrench researchers. 68. PET/CTBetterChoiceThanBoneMarrowBiopsyfor Diagnosis,PrognosisofLymphomaPatients ByMedimaging Internationalstaffwriters13Aug2013 18Ffluorodeoxyglucose(FDG)positronemissiontomography/computed tomography(PET/CT)imagingwhencomparedtobonemarrowbiopsy,was foundtobemoresensitive,demonstratedahighernegativepredictivevalue, andwasmoreaccuratefordiagnosingthesepatients changingtreatmentfor 42%ofpatientswithbonemarrowinvolvement. DLBCListhemostfrequentsubtypeofhighgradenonHodgkinlymphoma, accountingfornearly30%ofallnewlydiagnosedcasesintheUnitedStates.In recentdecades,therehasbeena150%increaseinincidenceofDLBCL.Inour study,weshowedthatindiffuselargeBcelllymphoma, 18FFDGPET/CThas betterdiagnosticperformancethanbonemarrowbiopsytodetectbone marrowinvolvementandprovidesabetterprognosticstratification. Whilebonemarrowbiopsyisconsideredthegoldstandardtoevaluatebone marrowinvolvementbyhighgradelymphomas,18FFDGPET/CTisinfactthe bestmethodtoevaluateextensionofthedisease,aswellasavoidinvasive procedures,saidLouisBerthet,MD,fromtheCentreGeorgesFrancoisLeclerc (Dijon,France),andleadauthorofthestudy,whichwaspublishedintheAugust 2013issueofthe JournalofNuclearMedicine. 69. PET/CTBetterChoiceThanBoneMarrow BiopsyforDiagnosis,PrognosisofLymphoma PatientsByMedimaging Internationalstaffwriters13Aug2013 Theretrospectivestudyincluded133patientsdiagnosedwithDLBCL.Allpatientsreceivedbotha wholebody 18FFDGPET/CTscan,aswellasabonemarrowbiopsytodeterminebonemarrow involvement.Afinaldiagnosisofbonemarrowinvolvementwasmadeifthebiopsywaspositive, orifthepositivePET/CTscanwasconfirmedbyaguidedbiopsy,bytargetedmagneticresonance imaging(MRI)or,afterchemotherapy,bytheconcomitantdisappearanceoffocalbonemarrow uptakeanduptakeinotherlymphomalesionson 18FFDGPET/CTreassessment.Progressionfree survivalandoverallsurvivalwerethenanalyzed. Thirtythreepatientswereconsideredtohavebonemarrowinvolvement.Ofthese,eightwere positiveaccordingtothebiopsyand32werepositiveaccordingtothePET/CTscan.18FDG PET/CTwasmoresensitive(94%vs.24%),showedahighernegativepredictivevalue(98%vs. 80%)andwasmoreaccurate(98%vs.81%)thanbonemarrowbiopsy.Amongthe26patients withpositive 18FFDGPET/CTresultsandnegativebiopsyresults,11wererestagedtostageIVby PET/CT,whichchangedtheirtreatmentplans.18FFDGPET/CTwasalsodeterminedtobean independentpredictorofprogressionfreesurvival. Ourfindingsaddtotheliteraturetoprovethesignificanceof 18FFDGPET/CTincancer evaluationandtodemocratizethisimagingmethod,concludedDr.Berthet.Molecularimaging isthebestmethodtoadapttargetedtherapiestoeachpatient.TheemergenceofPET/MRIand novelradiotracerspredictsanexcitingnewfutureforourfield. 70. Thankyou fortheattention!