cerling_1984_soilco3andclimatecalcrete.pdf

Upload: daniel-lira

Post on 02-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Cerling_1984_soilCO3andclimateCalcrete.pdf

    1/12

    Earth and Planetary Science Letters,

    71 (1984) 229-24 0 229

    Elsevier Science Publishers B.V., Am sterdam - Printed in The Netherlands

    [3]

    h e s t a b l e i s o t o p i c c o m p o s i t i o n o f m o d e r n s o i l c a r b o n a t e a n d i t s

    r e l a t i o n s h i p t o c l i m a t e

    T h u r e E C e r l in g

    Department of Geology and Geophysics, University of Utah, Salt Lak e C ity, UT 84112 U.S.A.)

    Received January 4, 1984

    Revised version received August 29, 1984

    The oxygen isotopic composition of mo dern soil carbonate is well correlated w ith the isotopic composition of local

    meteoric water. The carbon isotopic cycle for CO 2 in soils can b e described in terms of the prop ortion of biomass using

    the C4 photosynthetic pathway and the CO 2 respiration rate o f the soil; at low soil respiration rates significant

    atmospheric CO2 mixing can occur. In general, the carbon isotopic composition of soil carbonate is related to the

    propor t ion of C4 biomass present in soil , but soils that freeze to the depth of carbonate formation often have a

    significant atmospheric component. This suggests that freezing of the soil solution should be considered as another

    imp ortan t mechanism for soil carbonate formation. Bec ause of these relationships, the isotop ic composition of soil

    carbonate may be a paleoclimatic and paleoecologic indica tor in cases in which diagenetic alteration has no t occurred.

    1 I n t r o d u c t i o n

    S o i l c a r b o n a t e f o r m s u n d e r a r i d t o s u b - h u m i d

    c l i m a t i c c o n d i t i o n s [ 1, 2] . I n g e n e r a l , i t is f o u n d i n

    r e l a t iv e l y d r y s o i ls w h e r e g r a s s e s o r m i x e d g r a s s e s

    a n d s h r u b s a r e t h e d o m i n a n t v e g e t a t io n . U n d e r

    t h e s e c o n d i t i o n s s o i l p H i s g e n e r a l l y 7 o r a b o v e , i n

    c o n t r a s t t o f o r e s t e d s o i ls w h e r e p H i s b e l o w 6 .

    A u t h i g e n i c s o i l c a r b o n a t e i s c o m m o n i n s oi ls w h e r e

    m e a n a n n u a l r a i n f a l l is l e s s t h a n 7 5 c m w h i l e i t i s

    r a r e l y f o u n d i n s o il s r e c e i v in g m o r e t h a n 1 0 0 c m

    p r e c i p i t a t i o n p e r y e a r .

    S t a b l e i s o t o p e s i n s o i l c a r b o n a t e s a r e u s e f u l

    t r a c e r s o f t h e i n f l u e n c e o f c l i m a t e o n s o i l - f o r m i n g

    p r o c e s s e s . O x y g e n i s o t o p e s i n m e t e o r i c w a t e r s a r e

    r e l a t e d t o c li m a t e , e s p e c i a ll y m e a n a n n u a l t e m p e r -

    a t u r e [ 3 - 5 ]. T h e c a r b o n i s o t o p i c c o m p o s i t i o n o f

    s o i l C O 2 d u r i n g t h e g r o w i n g s e a s o n i s r e l a t e d t o

    t h e c a r b o n i s o t o p i c c o m p o s i t i o n o f th e b i o m a s s

    [ 6 - 9 ] w h i c h i s r e l a t e d t o t h e p r o p o r t i o n o f p l a n t s

    t h a t u s e t h e C 4 p h o t o s y n t h e t i c p a t h w a y [ 1 0, 11 ] .

    T h e f l u x o f w a t e r i n a s o i l r e c e i v i n g 5 0 c m o f r a i n

    p e r y e a r i s 2 .8 m o l e s c m - 2 y - l ; t y p i c a l f lu x e s o f

    b i o g e n ic C O f r o m g r a s s l a n d s o i l s a r e o n t h e o r d e r

    o f 5 1 0 - 3 m o l e s c m 2 y - a [ 12 ,1 3 ]. B e c a u s e s o i l

    c a r b o n a t e f o r m s a t m u c h l o w e r r a te s t h a n t h i s ,

    t y p i c a l l y 1 10 6 t o 1 10 - 5 m o l e c m - 2 y - 1

    [ 1 4 - 1 6 ] , i t i s l i k e ly th a t t h e o x y g e n a n d c a r b o n

    i s o t o p i c c o m p o s i t i o n o f s o il c a r b o n a t e i s c o n -

    t r o l l e d b y t h e o x y g e n i s o t o p i c c o m p o s i t i o n o f

    m e t e o r i c w a t e r s a n d b y t h e c a r b o n i s o t o p i c c o m -

    p o s i t i o n o f s o i l C O 2 , r e s p e c t i v e l y .

    F e w p r e v i o u s s t u d i e s h a v e e x a m i n e d t h e is o -

    t o p i c c o m p o s i t i o n o f s o i l c a r b o n a t e ( e .g ., [ 1 7 - 2 2 ] ) .

    T h e r e l a t i o n s h i p b e t w e e n t h e i s o t o p i c c o m p o s i t i o n

    o f m e t e o r i c w a t e r a n d s o il c a r b o n a t e a n d b e t w e e n

    v e g e t a t i o n a n d s o il c a r b o n a t e h a s n o t b e e n e s t a b -

    l i s h e d b y t h e s e s t u d i e s b e c a u s e t h e y h a v e e x -

    a m i n e d c a r b o n a t e s f o r m e d o n l i m e s t o n e p a r e n t

    m a t e r i a l [ 1 7 ,1 9 , 21 , 2 2] o r h a v e s t u d i e d s o i l

    c a r b o n a t e s f o r m e d d u r i n g s e v e r a l c l i m a t i c e p i s o d e s

    o r d u r i n g u n k n o w n c l i m a t i c c o n d i t i o n s [ 1 7 - 2 2 ] .

    T h i s s t u d y e x a m i n e s s o il c a r b o n a t e s f o r m e d d u r i n g

    a b o u t t h e p a s t 1 0 , 0 0 0 y e a r s ; i t is o n l y f o r th i s t i m e

    i n t e r v a l t h a t o n e c a n u s e t h e m o d e r n v a l u e s f o r th e

    i s o t o p i c c o m p o s i t i o n o f m e t e o r i c w a t e r s a n d t h e

    0012-821X/84/ 03.00 1984 Elsevier Science Publishers B.V.

  • 8/10/2019 Cerling_1984_soilCO3andclimateCalcrete.pdf

    2/12

    230

    m o d e r n v e g e t a t i o n a s a n e s t i m a t e o f t h e i s o t o p i c

    c o m p o s i t i o n o f s o il w a t e r a n d s o il C O 2 t h a t p r o -

    d u c e d t h e s oi l c a r b o n a t e s e x a m i n e d . I n a d d i t i o n ,

    s o m e r e s u l t s o n p a l e o s o l c a r b o n a t e s a r e r e p o r t e d

    b e c a u s e p a l e o s o l c a r b o n a t e s m a y g i v e a n i n d i c a -

    t i o n o f a n c i e n t c l i m a t i c o r e c o l o g i c c o n d i t i o n s .

    2 T e r m i n o l o g y a n d m e t h o d s

    I n o r d e r t o u s e s t a b l e i s o t o p e s t o s t u d y

    c a r b o n a t e f o r m a t i o n a n d i ts r e la t i o n s h ip t o c li m a t e ,

    i t i s n e c e s s a r y t o e l i m i n a t e t h e p r o b l e m o f

    c a r b o n a t e n o t f o r m e d i n t h e s o i l . I n t h i s s t u d y

    o n l y t h o s e s o i l s o r p a l e o s o l s w e r e s t u d i e d w h e r e

    m a r i n e l i m e s t o n e m a k e s u p a n e g l i g i b l e f r a c t i o n o f

    t h e p a r e n t m a t e r i a l . T h r o u g h o u t t h i s p a p e r , t h e

    t e r m so i l carbonate i s u s e d t o r e p r e s e n t o n l y t h e

    c a r b o n a t e i n t h e s o il o r p a l e o s o l t h a t i s a u t h i g e n i c ,

    t h a t i s , f o r m e d i n p l a c e . Calcre te s r e p r e s e n t a

    s p e c i a l s o r t o f s o i l c a r b o n a t e d e p o s i t : t h a t o f m a s -

    s iv e , c o n t i n u o u s h o r i z o n s m e a s u r i n g u p t o s e v e r a l

    m e t e r s i n t h i c k n e s s . T h e y a r e g e n e r a l l y f o u n d i n

    r e g i o n s t h a t r e c e i v e f r o m 2 5 t o 7 5 c m a n n u a l

    r a i n f a l l .

    M o d e r n s o il c a r b o n a t e s f r o m A f r i c a a n d N o r t h

    A m e r i c a w e r e a n a ly z e d . S a m p l e s w e r e c h o s e n f r o m

    a r e a s w h e r e i t w a s p o s s i b l e t o e s t i m a t e t h e p r o p o r -

    t i o n o f C 4 b i o m a s s p r e s e n t w h e n s oi l c a r b o n a t e

    f o r m a t i o n o c c u r r e d . S a m p l e s s t u d i e d a n d t h e i r l o -

    c a l i ti e s a r e b r i e f ly d e s c r i b e d i n A p p e n d i x 1 .

    C a r b o n a t e s w e r e r e a c t e d w i t h 1 00 p h o s p h o r i c

    a c i d t o l i b e r a t e C O 2 . M o d e r n s o il c a r b o n a t e s w e r e

    r o a s t e d a t 4 5 0 C u n d e r v a c u u m p r i o r t o r e a c ti o n

    w i t h H 3 P O 4 . O x y g e n a n d c a r b o n i s o to p i c r a t i o s

    a r e r e p o r t e d i n t h e s t a n d a r d n o t a t i o n r e l a t i v e t o

    t h e P D B s t a n d a r d . W a t e r s a m p l e s d i s cu s s e d in t h e

    t e x t w e r e a n a l y z e d b y e q u i l i b r a t i o n w i t h C O 2 g a s

    a n d s u b s e q u e n t m a s s s p e c t r o m e t e r a n a ly s i s; t h e y

    a r e r e p o r t e d r e l a t i v e t o t h e i s o t o p i c s t a n d a r d

    S M O W . O r g a n i c c a r b o n f r o m t w o s o il s w a s

    a n a l y z e d b y c o m b u s t i o n a t 8 0 0 C u s i n g C u O a n d

    A g f o i l [3 0] a f t e r C a C O 3 w a s r e m o v e d w i t h 1 0

    H C 1 .

    3 R e s u l t s a n d d i s c u s s i o n

    T h e r e s u l t s o f a l l i s o t o p i c a n a l y s e s o f m o d e r n

    s o i l c a r b o n a t e a r e g i v e n i n T a b l e 1 . I n a d d i t i o n ,

    e s t i m a t e s o f t h e f r a c t i o n o f C 4 f l o r a a n d o f t h e

    i s o t o p i c c o m p o s i t i o n o f m e t e o r i c w a t e r a r e i n -

    c l u d e d f o r e a c h s i t e .

    3 . 1 . Re la t ionsh ip be tween the oxygen i so top ic com

    p o s i t io n o f so i l c a r b o n a t e a n d m e t e o r i c w a t e r

    I t h a s p r e v i o u s l y b e e n s u g g e s t e d t h a t t h e o x y g e n

    i s o t o p i c c o m p o s i t i o n o f s o i l c a r b o n a t e m a y b e

    r e l a te d t o t h e o x y g e n i s o t o p i c c o m p o s i t i o n o f

    m e t e o r i c w a t e r [2 0 ]. S a l o m o n s e t a l . [ 20 ] f o u n d

    p o o r a g r e e m e n t b e t w e e n t h e e x p e c t e d 6 1 ~ O v a l u e s

    o f s o il c a r b o n a t e c a l c u la t e d f r o m e s t i m a t e d

    m e t e o r i c w a t e r c o m p o s i t i o n s a n d t h e m e a s u r e d

    6 1 8 0 v a l u e s o f s o i l c a r b o n a t e . T h e y a t t r i b u t e d t h i s

    o b s e r v a t i o n t o d i f f e r e n c e s i n m e c h a n i s m s o f s o i l

    c a r b o n a t e f o r m a t i o n . H o w e v e r , b e c a u s e t h o s e

    c a l c r e t e s f o r m e d o v e r m u c h o f t h e p a s t m i l l i o n

    y e a r s , it is p o s s i b l e t h a t t h e y f o r m e d u n d e r c l i m a t i c

    c o n d i t i o n s d i f f e r e n t f r o m t h e p r e s e n t s o t h a t m o d -

    e r n i s o t o p i c v a l u e s o f m e t e o r i c w a t e r s h o u l d n o t b e

    a p p l i e d t o t h o s e e x a m p l e s .

    S a m p l e s i n t h i s s t u d y w e r e c h o s e n t o m a x i m i z e

    t h e r a n g e o f 6 1 8 0 o f m e t e o r i c w a t e r ; F i g . 1 s h o w s

    0

    b J

    Z

    0

    m - 5

    n , -

    .

    r e sp e c t i v e l y . T h e se a r e :

    c ? = c i * R ,

    ] fo r R a a n d R s

    a n d :

    R,

    l l + R i ] fo r R~,

    w h e r e R S, R , , a n d R a r e p r e s e n t t h e i s o t o p i c r a t i o

    R i = ( 1 3 C O 2 / 1 2 C O 2 ) , o f c a r b o n d i o x i d e i n s o i l a ir ,

    n e t r e s p i r e d C O 2 , a n d a t m o s p h e r i c C O > r e s p e c -

    t i v e l y . U s i n g t h e n o t a t i o n :

    8~ = ( R ~ 1 ) x 1 0 0 0 f o r 8 s, 8 ~, a n d ~

    p D B , 8 )

    w h e r e 8 i s t h e p e r m i l v a l u e f o r so i l a i r , t h e a t m o -

    sp h e r e , o r r e s p i r e d C O > r e sp e c t i v e l y , a n d R p I) B i s

    t h e r a t i o ( 1 3 C / 1 2 C ) i n t h e i s o t o p i c s t a n d a r d P D B .

    S u b s t i t u t i n g i n t o e q u a t i o n s ( 4 ) , ( 6 ) , ( 7 ) , a n d ( 8 ) :

  • 8/10/2019 Cerling_1984_soilCO3andclimateCalcrete.pdf

    5/12

    233

    ( [ Z 2 . ] t

    z 2 D, .

    w h e r e :

    1 + R p o B ( 1 0 ~ 0 + 1 )

    l o g Pc o z

    4 .0 3 . 0 2 . 0

    c,o~ ~ O~e S

    ~

    _ j ~ , ^ , e

    A.

    I00

    0 ~ 9 Z ~ 1 5 . ~

    2 /

    ~ cp

    o o

    0 I 2 3 4 5 6

    S o i l R e s p i r a t i o n R a t e 1 0 - 3 m o l e s m - 2 h r - i )

    Fig. 2. A. Calculated steady state P(CO2) for different soil

    respiration rates using the soil model described in the text

    where L = 100 cm. B. Calculated steady state carbon isotopic

    composition of soil carbon dioxide for different soil respiration

    rates using the model described in the text. 3a3C values of

    -27%o and -6%o were used for net soil respired CO 2 and

    atmospheric COz, respectively.

    1000

    U s i n g 6 , = - 2 7 a n d 6a = - 6 ~ ( t h e e s t i m a t e d

    p r e - i n d u s t r i a l v a l u e f o r a t m o s p h e r i c C O 2 [ 49 ]) i t i s

    p o s s i b l e t o c a l c u l a t e t h e i s o t o p i c c o m p o s i t i o n o f

    t h e s o i l a t m o s p h e r e . F i g . 2 B s h o w s t h e s t e a d y - s t a t e

    d i s t r i b u t i o n o f 6 13 C as a f u n c t i o n o f d e p t h f o r

    d i f f e r e n t s o i l r e s p i r a t i o n r a t e s i n t h e m o d e l s o i l

    d e s c r i b e d a b o v e . T h e s e c u r v e s a r e c o m p a t i b l e w i t h

    t h e f o l l o w i n g o b s e r v a t i o n s : s o il C O 2 i s o f t e n 3 - 7 ~

    h e a v i e r t h a n t h e s o i l o r g a n i c m a t t e r [ 7 , 9 , 3 8 , 3 9 ] ;

    m o s t s o i l s s a m p l e d d u r i n g p e r i o d s o f h i g h s o i l

    r e s p i r a t io n d o n o t s h o w a n i s o t o p i c g r a d i e n t b e l o w

    3 0 c m d e p t h [ 9 , 3 9 ] ; d u r i n g p e r i o d s o f l o w s o i l

    r e s p i r a t i o n a m e a s u r a b l e i s o t o p i c g r a d i e n t c a n b e

    o b s e r v e d [ 40 ]; a n d t h e n e t r e s p i r e d s o i l C O 2 i s

    a b o u t 4 ~ l i g h t e r t h a n t h e m e a s u r e d s o i l C O 2 [9 ] .

    T h i s l a t t e r s t u d y [ 9] a t t r i b u t e d t h i s e f f e c t t o m o l e c -

    u l a r d i f f u si o n . F o r s o il C O 2 c o n c e n t r a t i o n s o f

    1 0 2 0, l i m i ts o f - 2 2 . 2 e a n d - 8 . 5 ~ a r e c a l c u -

    l a t e d f o r t h e i s o t o p i c c o m p o s i t i o n o f s o il C O 2

    d e r i v e d f r o m s o il r e s p i r e d C O 2 w i t h i s o t o p i c c o m -

    po s i t ion s of - 27 ~ and - 13 o , re spec t iv e ly , wh ich

    r e p r e s e n t p u r e C 3 a n d C 4 b i o m a s s e s , r e s p e c t i v e l y .

    T h i s f i g u re S ho w s t h a t t h e a t m o s p h e r i c c o m p o n e n t

    i s l i k el y t o b e i m p o r t a n t o n l y w h e n s o il r e s p i ra t i o n

    r a t e s a r e q u i t e l o w o r a t v e r y s h a l l o w d e p t h s ( l e s s

    t h a n 1 0 c m ) , o r b o t h . T h i s h a s i m p o r t a n t i m p l i c a -

    t i o n s c o n c e r n i n g s o i l c a r b o n a t e f o r m a t i o n , w h i c h

    w i l l b e d i s c u s s e d b e l o w .

    3 .3 . Re la t ionsh ip be tween the carbon o top ic com -

    p o s i t i o n o f s o i l ca r b o n a t e a n d t h e p r o p o r t i o n o f

    C 4 b ioma ss

    T h e c a r b o n i s o t o p i c c o m p o s i t i o n o f s o i l

    c a r b o n a t e i s b e s t c o n s i d e r e d w i t h r e s p e c t t o t h e

    c a r b o n i s o t o p i c c o m p o s i t i o n o f t h e s o i l a t m o -

    s p h e r e. T h e i s o t o p i c c o m p o s i t i o n o f t h e s o il a t m o -

    s p h e r e , a s s h o w n a b o v e , i s r e l a t e d t o t h e p r o p o r -

    t i o n o f C 4 b i o m a s s , a n d t h e s o i l r e s p i r a t i o n r a t e .

    C 4 p l a n t s a r e w e l l a d a p t e d t o c o n d i t i o n s o f h i g h

    w a t e r s t re s s , p a r t i c u l a r l y w h e n t h a t s t re s s is r e l a t e d

  • 8/10/2019 Cerling_1984_soilCO3andclimateCalcrete.pdf

    6/12

    234

    t o h i g h t e m p e r a t u r e s . I t h a s b e e n o b s e r v e d t h a t C

    g r a s s e s a re n o t p r e s e n t i n f l o r a s w h e n n i g h t t e m -

    p e r a t u r e s f a l l b e l o w 8 C [ 32 ,4 7 ]. V e g e t a t i o n i n

    r e g io n s o f so il c a r b o n a t e f o r m a t i o n i n c lu d e s m a n y

    p l a n t f a m i li e s w h o s e m e m b e r s i n c l u d e b o t h C 3 a n d

    C 4 s p e c i e s ( e. g. , P o a c e a e , C h e n o p o d i a c e a e ,

    E u p h o r b i a c e a e ) a l th o u g h m o s t t re e s c o m m o n t o

    a r i d o r s e m i - a r i d c l i m a t e s a r e C 3 s p e c i e s ( e .g . ,

    Acacia . G r a s s e s ( P o a c e a e ) a r e p a r t i c u l a r l y s e n s i -

    t i v e t o t e m p e r a t u r e a n d t h e d i s t r i b u t i o n o f C 4

    g r a s s e s i s k n o w n f o r m a n y r e g i o n s [ 3 1 , 3 2 , 4 6 , 4 7 ,

    5 1 , 5 2 ] . T h e s e k n o w n d i s t r i b u t i o n s w e r e u s e d t o

    e s t i m a t e t h e f r a c t i o n o f C 4 fl o r a f r o m t h o s e l o c a l i -

    t i es w h e r e g r a s s e s m a k e u p t h e f l o r a ; f o u r l o c a l i ti e s

    a r e i n c l u d e d i n t h i s s t u d y w h e r e t h e s e d i s t r i b u t i o n s

    c a n n o t b e u s e d : t h e t w o s a m p l e s f r o m t h e l i t e r a -

    t u r e (I s r a e l a n d t h e N e t h e r l a n d s ) a n d t h e s a m p l e s

    f r o m L a e t o l i a n d N g u u w h i c h a r e i n b l a c k c o t t o n

    s o i l s a n d h a v e a s i g n i f i c a n t f r a c t i o n o f

    Acacia

    drepanolobium

    p r e s e n t . B i o m a s s e s t i m a t e s f o r

    L a e t o l i a n d N g u u a r e b a s e d o n t h e a s s u m p t i o n

    t h a t t h e m e a s u r e d ~ a 3 C v a l u e s o f s o i l o r g a n i c

    m a t t e r a r e du e t o t h e g r as s c o m p o n e n t b e c a u s e t h e

    s o i l s a m p l e s c o l l e c t e d w e r e s i t u a t e d a w a y f r o m

    Acacia t re e s. T h u s t h e v a l u es o f - 1 5 a n d - 1 3 o

    r e p r e s e n t g r a s s p o p u l a t i o n s o f 8 5 a n d 1 0 0 C 4

    c o m p o n e n t s f o r L a e t o l i a n d N g u u , r e s p e c t i v e l y . I f

    t h e Acacia b i o m a s s i s a b o u t 2 5 , t h e n t h e t o t a l C 4

    b i o m a s s i s a b o u t 60 a n d 7 5 , r e s p e c t iv e l y , f o r

    t h e s e t w o l o c a l i t i e s . B e c a u s e o f t h e u n c e r t a i n t y i n

    t h e Acacia b i o m a s s e s t i m a t e , t h e o v e r a l l e s t i m a t e

    i n f r a c t i o n C 4 b i o m a s s i s l e ss c e r t a i n f o r t h e s e

    l o c a l i t i e s t h a n f o r o t h e r l o c a l i t i e s .

    N e w l y - f o r m e d c a l c i t e i n s o i l s c a n p r o b a b l y b e

    c o n s i d e r e d t o b e i n i s o t o p i c e q u i l i b r i u m w i t h t h e

    g a s p h a s e s i n c e r a t e s o f c h a n g e i n P ( C O 2 ) i n s o i l s

    a r e m u c h s l o w e r t h a n t h o s e u s e d i n l a b o r a t o r i e s t o

    d e t e r m i n e e q u i l i b r i u m i s o t o p i c f r a c t i o n a t i o n ( e . g . ,

    [ 5 3 ] ) . S o m e p r e v i o u s s t u d i e s h a v e c o n s i d e r e d

    c a r b o n a t e f o r m a t i o n i n s o i l s t o t a k e p l a c e i n a

    c l o s e d s y s t e m [ 18 ,2 0] s o t h a t t h e c a r b o n i s o t o p i c

    c o m p o s i t i o n o f t h e s o i l s o l u t i o n c h a n g e s a c c o r d i n g

    t o a s i m p l e R a y l e i g h p r o c e s s . T h i s i s u n l i k e l y

    b e c a u s e o f t h e c o n t i n u o u s C O 2 f l u x d u e t o s o i l

    r e s p i r a t i o n . T h u s , s o i l s o l u t i o n s a r e c o n s i d e r e d t o

    b e i n e q u i l i b r i u m w i t h a C O 2 r e s e r v o i r w h o s e

    i s o t o p i c c o m p o s i t i o n i s u n c h a n g e d b y c a r b o n a t e

    f o r m a t i o n .

    F o r t h e p u r p o s e o f d i s c u s s i n g t h e g l o b a l d i s t r i -

    b u t i o n o f 61 3C i n s o il c a r b o n a t e , a n i s o t o p i c f r a c -

    t i o n a t i o n ( 1 0 3 i n a ) o f - 1 0 . 3 6 [ 5 4 ] a t 2 5 C f o r

    C O 2 - C a C O 3 w i ll b e u s e d . U s i n g t h is t o c a l c u l a t e

    t h e i s o t o p i c c o m p o s i t i o n o f s o i l c a r b o n a t e i n e q u i -

    l i b r iu m w i t h t h e C O 2 o f t h e p u r e c o m p o n e n t e n d -

    m e m b e r s , i t is p o s s i b l e to s h o w t h e m i x i n g o f t h e s e

    r e s e r v o i r s . F i g . 3 s h o w s t h i s m i x i n g a n d g i v e s t h e

    6 1 3 C v a l u e s f o r m o d e r n s o i l c a r b o n a t e a n a l y z e d i n

    t h i s s t u d y ; i t s h o w s t h a t i n g e n e r a l t h e r e i s g o o d

    a g r e e m e n t b e t w e e n t h e c a r b o n i s o t o p i c c o m p o s i -

    t i o n o f s o i l c a r b o n a t e a n d t h e f r a c t i o n o f C 4 b i o -

    m a s s p r e s e n t . T h e h i g h s t a n d a r d d e v i a t i o n f o r t h e

    s a m p l e s f r o m I o w a r e s u l t f r o m t h e p r e s e n c e o f tw o

    i s o t o p i c p o p u l a t i o n s w i t h 6 1 3 C v a l u e s o f a b o u t

    - 2 .9 0 an d - 7 .2 0 , r e sp ec t iv e ly .

    [

    5 i o o

    - 1

    - I 0 -

    1 5 1 0 I L I i 1 t I

    . 5 0

    F R A C T I O N C 4 F L O R A

    F i g . 3. C a r b o n i s o t o p i c c o m p o s i t i o n o f s oi l c a r b o n a t e c o m -

    p a r e d t o e s t i m a t e o f t h e f r a c t i o n o f C 4 p l a n t s i n l o c a l f l o r a

    ( d a t a f r o m T a b l e 1 ), M i x i n g l i n e s o f c a l c i te i n e q u i l i b r i u m w i t h

    s o i l C O 2 a n d a t m o s p h e r i c C O 2 s h o w n f o r r e fe r e n c e . T h e s e a r e

    c a l c u l a t e d u s i n g a n i s o t o p ic f r a c t i o n a t i o n f a c t o r ( 1 0 3 I n a ) o f

    - 1 0 . 3 6 o a t 2 5 C , a n d u s i n g ~ 1 3 C v a l u e s o f - 22 .2 0 , - 8 .5 ~ ,

    a n d - 6 o f o r t h e c a r b o n i s o t o p i c c o m p o s i t i o n f o r s o il C O 2

    f r o m a 10 0 C 3 f l o r a , s o i l C O 2 f r o m a 1 0 0 C 4 f l o r a , a n d

    a t m o s p h e r i c C O 2 , r e s p e c t i v e ly . N u m b e r s r e f e r t o l o c a li t y n u m -

    b e r s i n T a b l e 1 .

  • 8/10/2019 Cerling_1984_soilCO3andclimateCalcrete.pdf

    7/12

    3 4 Impl icat ions for soi l carbonate formation

    S o i l c a r b o n a t e f o r m a t i o n i s g e n e r a l l y c o n s i d -

    e r e d t o r e s u l t f r o m c a r b o n a t e s u p e r s a t u r a t i o n d u e

    t o e v a p o r a t i o n , e v a p o t r a n s p i r a t i o n , a n d l o w e r i n g

    o f P ( C O 2 ) [ 1 , 2 , 1 7 - 2 1 , 2 8 ] . O f t h e s e , e v a p o r a t i o n i s

    p r o b a b l y o f l i t t l e s i g n i f i c a n c e b e c a u s e e v a p o t r a n -

    s p i r a t io n i s t h e d o m i n a n t m e c h a n i s m f o r s o il w a t e r

    l o s s in a r e a s c o v e r e d b y v e g e t a t i o n [ 2 ,5 5] . F e w

    s t u d ie s h a v e e x a m i n e d t h e e f f e c t o f e v a p o t r a n s -

    p i r a t i o n o n t h e i s o t o p i c c o m p o s i t i o n o f s o i l s o l u -

    t i o n s b u t i t i s t h o u g h t t o b e n o n - f r a c t i o n a t i n g

    [ 4 , 5 7 ] . W i t h o u t d e t a i l e d s t u d i e s o f t h e a n n u a l

    o x y g e n a n d h y d r o g e n i s o t o p i c v a r i a t i o n s i n s o i l

    w a t e r s , i t i s n o t p o s s i b l e t o a d d r e s s t h i s p r o b l e m .

    T h e c a r b o n i s o t o p i c c o m p o s i t i o n o f t h e s e s o i l

    c a r b o n a t e s d o e s h a v e i m p o r t a n t i m p l i c a t i o n s c o n -

    c e r n i n g s o i l c a r b o n a t e f o r m a t i o n . O f p a r t i c u l a r

    i n t e r e s t a r e t h o s e s a m p l e s t h a t f a l l a b o v e t h e 1 0 %

    a t m o s p h e r i c c o m p o n e n t l i n e . S a m p l e s b e l o w t h e

    l i n e ( e x c e p t I o w a w h i c h f a ll s n e a r t h e 1 0 % l in e ) a r e

    f r o m r e g i o n s w h e r e t h e s o il d o e s n o t f r e e z e t o t h e

    d e p t h o f c a r b o n a t e f o r m a t i o n ; a ll sa m p l e s w i t h a

    s i g n i f i c a n t a t m o s p h e r i c c o m p o n e n t a r e f r o m r e -

    g i o n s w h e r e t h e s o i l a n n u a l l y f r e e z e s t o t h e d e p t h

    o f c a r b o n a t e f o r m a t i o n . T h i s i m p l i e s t h a t s o m e

    c a r b o n a t e m a y b e f o r m e d d u r i n g p e r io d s o f l ow

    s o il r e s p ir a t i o n r at e s. A n i m p o r t a n t m e c h a n i s m f o r

    s o i l c a r b o n a t e f o r m a t i o n c o u l d b e d u e t o t h e i n -

    c r e a s e i n i o n c o n c e n t r a t i o n s t h a t r e s u l t s f r o m i o n

    e x c l u s i o n d u r i n g i c e f o r m a t i o n . B e c a u s e s o i l r e s p i -

    r a t i o n r a t e s a r e o n t h e o r d e r o f 0 . 2 5 1 0 3 m o l e s

    m 2 h r - 1 o r l es s d u r i n g p e r i o d s o f s o il fr e e z i n g

    (e .g . , [43] ) i t i s pos s ib le to ge t a h igh a tmospher i c

    c o m p o n e n t i n s o i l c a r b o n a t e f o r m e d b y t h i s p r o -

    c e s s ( F i g . 2 B ) . A s i n g l e s a m p l e o f c e m e n t e d d u n e

    m a t e r i a l f r o m A l a s k a [ 2 9 ] w a s e x a m i n e d w i t h t h i s

    in min d; i t y i e ld ed a 813C va lu e o f + 1.1 _+ 1 .1%o

    i n d i c a t i v e o f a h i g h a t m o s p h e r i c c o m p o n e n t . T o

    c a l c u l a t e t h e a t m o s p h e r i c c o m p o n e n t f o r s u c h a

    s a m p l e o n e w o u l d o f c o u r s e h a v e t o c o m p u t e t h e

    a t m o s p h e r i c c o m p o n e n t b a s e d o n a t e m p e r a t u r e o f

    0 C r a t h e r t h a n 2 5 C a s i n F i g . 3 . T h i s r e s u l t s i n

    a n u p p e r l i m i t o f a b o u t + 8% o f o r t h e i s o t o p i c

    c o m p o s i t i o n o f s o i l c a r b o n a t e p r e c i p i t a t e d a t 0 C

    f r o m a 1 00 % a t m o s p h e r i c c o m p o n e n t . I f a p p l i e d

    t o t h i s s a m p l e f r o m A l a s k a , t h i s i m p l i e s a n a t m o -

    s p h e ri c c o m p o n e n t o f 6 0 - 8 0 % .

    235

    S t u d i e s o f s o i l c a r b o n a t e f r o m s i n g l e s o i l s o f t e n

    h a v e a d e v i a t i o n o f a b o u t _ + 0. 5% f o r 6 1 3 C ( e. g .,

    [ 1 8 , 2 0 ] ) . S o i l c a r b o n a t e f o r m e d b y s o l u t i o n c o m -

    p o s i t i o n c h a n g e s r e s u l t i n g f r o m e v a p o t r a n s p i r a -

    t i o n , f r o m c h a n g e s i n P CO2 ) , o r r e s u l t i n g f r o m

    s o il s o l u t i o n f r e e z i n g h a v e i s o t o p i c s i g n a t u r e s t h a t

    r e s u l t f ro m t h e t h r e e - c o m p o n e n t m i x i n g d e s c r i b e d

    a b o v e . T h i s m o d e l s u g g e s t s t h a t v a r i a t i o n s i n t h e

    8 ~ 3 C o f s o i l c a r b o n a t e m a y r e s u l t f r o m m i x i n g o f

    t h e s e t h r e e r e s e r v o i r s a n d f r o m v a r i a t i o n s i n t h e

    p r o p o r t i o n o f C 4 f lo r a s s e a s o n a ll y o r o v e r a l o n g

    i n t e r v a l o f t i m e . P r e v i o u s l y , t h e s e c h a n g e s h a v e

    b e e n a t t r i b u t e d t o c l o s e d s y s t e m c a r b o n a t e f o r m a -

    t i o n [ 1 9 , 2 0 ] o r t o c o n t a m i n a t i o n w i t h d e t r i t a l

    materia l [18,22].

    3 5 Relationship between 6180 and 613C in soi l

    carbonate

    A c o u p l i n g i s e x p e c t e d b e t w e e n t h e 8 1 3 C a n d

    6 ~S O v a l u e s f o r m a n y s o i l c a r b o n a t e s . T h e f r a c t i o n

    o f C 4 g ra s s e s i s w e l l c o r r e l a t e d w i t h n i g h t - t i m e

    t e m p e r a t u r e s [ 1 0 , 3 2] ; h e n c e , t h e 8 13 C v a l u e f o r s o i l

    C O 2 is e x p e c t e d t o b e h i g h e r i n r e g i o n s w i t h h i g h

    n i g h t t e m p e r a t u r e s . T h e o x y g e n i s o t o p i c c o m p o s i -

    t i o n o f m e t e o r i c w a t e r s f r o m c o n t i n e n t a l s t a t i o n s

    r e c e i v i n g l es s t h a n 1 0 0 0 m m a n n u a l p r e c i p i t a t i o n

    i s w e l l c o r r e l a t e d w i t h m e a n a n n u a l t e m p e r a t u r e

    [ 3 5 ] e x c e p t f o r r e g i o n s w h i c h h a v e m o n s o o n a l

    c l i m a t i c c o n d i t i o n s , w h i c h a r e o f t e n 4 - 6 % o d e -

    p l e t e d i n ~ 8 0 r e l a t i v e t o c o n t i n e n t a l s t a t i o n s o f

    s i m i l a r t e m p e r a t u r e s ( F i g . 4 ) . I n m o s t r e g i o n s , t h e

    n i g h t - t e m p e r a t u r e s d u r i n g t h e g r o w i n g s e a s o n a n d

    m e a n a n n u a l t e m p e r a t u r e a r e w e l l c o r r e l a t e d ; a n

    i m p o r t a n t e x c e p t i o n a r e t h o se c li m a t e s b u f f e r e d b y

    m a r i n e c o n d i t i o n s w h i c h a r e e x p e c t e d t o h a v e a

    d i s p r o p o r t i o n a t e l y h i g h p e r c e n t a g e o f C 3 p la n t s .

    T h u s , S a n F r a n c i s c o (U . S . A . ) a n d S t . L o u i s

    ( U . S . A . ) b o t h h a v e m e a n a n n u a l t e m p e r a t u r e s o f

    1 3 C , b u t h a v e J u ly m i n i m u m t e m p e r a t u r e s o f 1 2

    a n d 1 9 C , a n d C 4 / ( C 3

    + C4

    p e r c e n t a g e s o f 8 %

    an d 60%, re spec t ive ly [32].

    F i g . 5 B s h o w s a g e n e r a l m o d e l f o r t h e i s o t o p i c

    c o m p o s i t i o n o f s o i l c a r b o n a t e s d e v e l o p e d o n g r as s -

    l a n d s. N o r m a l c o n t i n e n t a l s o il c a r b o n a t e s a r e

    r e p r e s e n t e d i n t h e s h a d e d a r e a , w h i c h i s b o u n d e d

    b y t h e 0 - 3 0 % a d m i x t u r e o f t h e a t m o s p h e r i c c o r n -

  • 8/10/2019 Cerling_1984_soilCO3andclimateCalcrete.pdf

    8/12

    2 3 6

    0

    -5

    ~ - I 0

    o

    -co

    -15

    -20

    I I I I I I [ [

    S ta t ion wh e re P _

  • 8/10/2019 Cerling_1984_soilCO3andclimateCalcrete.pdf

    9/12

    I n t e n s e , h e a v y r a i n f a l l s o f t e n s h o w a d e p l e t i o n i n

    1 8 0 ; m o n s o o n a l w a t e r s i n I n d i a a r e d e p l e t e d b y

    a b o u t 6 0 r e l a t i v e t o n o r m a l c o n t i n e n t a l w a t e r s

    ( F i g . 4 ) . C a l c r e t e s f r o m I n d i a [ 2 0 ] s h o w t h i s e f f e c t

    a n d f a l l i n f i e l d C i n F i g . 5 B . A n o t h e r i m p o r t a n t

    s i t u a t i o n m a y b e p r e s e n t i n p e r i g l a c i a l e n v i r o n -

    m e n t s ; i f c a r b o n a t e p r e c i p i t a t io n r e su l ts p r i m a r i l y

    f r o m s o il f r e e z i n g w h e n s o il r e s p i r a t i o n r a t e s a r e

    l o w , v e r y h i g h 6 13 C v a l u e s a r e p o s s i b l e ( f i e ld D i n

    F i g . 5 B ) . O n e s a m p l e i n o u r s t u d y f r o m A l a s k a

    m a y b e r e p r e s e n t a t i v e o f t h i s c o n d i t i o n ; D e v e r e t

    a l. [ 22 ] h a v e a l s o i d e n t i f i e d s o il c a r b o n a t e t h a t t h e y

    a t t r i b u t e t o p e r i g l a c i a l c o n d i t i o n s . T h e p r e s e n c e o f

    a s i g n i f i c a n t n o n - g r a s s c o m p o n e n t i n t h e b i o m a s s

    w o u l d a l s o t e n d t o m a k e 3 1 3 C v a l u e s m o r e n e g a -

    t i v e ; t h i s w a s i m p o r t a n t i n t w o o f t h e s a m p l e s

    s t u d i e d .

    3 6 Use of the isotopic com posi t ion of soi l carbon ate

    as a pa leoc l imat i c ind ica tor

    P a l e o s o l c a r b o n a t e s m a y b e u s e f u l i n s o m e c a s e s

    i n d e t e r m i n i n g p a l e o c l i m a t e s s i n c e , i f t h e y a r e

    u n a l t e r e d b y d i a g e n e s i s , t h e y r e c o r d i n f o r m a t i o n

    c o n c e r n i n g b o t h t h e i s o t o p i c c o m p o s i t i o n o f

    m e t e o r i c w a t e r a n d t h e p r o p o r t i o n o f C 4 b i o m a s s

    p r e s e n t i n t h e e c o s y s te m . T w o p r o b l e m s a r e o f

    i m m e d i a t e c o n c e r n : o v e r p r i n t i n g a n d d i ag e n e si s.

    O v e r p r i n t i n g r e f e r s t o t h e i m p o s i t i o n o f l a t e r

    c l i m a t ic i n f o r m a t i o n o n p r e v i o u s i n f o r m a t i o n . T h i s

    c o u l d t a k e p l a c e i f t h e s o i l c a r b o n a t e i n a s i n g l e

    h o r i z o n f o r m e d d u r i n g s e v e r a l d i f f e r e n t c l i m a t i c

    e p i s o d e s . I t i s p o s s i b l e t h a t s o m e o f t h e v a r i a t i o n

    o b s e r v e d i n s o i l c a r b o n a t e s , e s p e c i a l l y c a l c r e te s , i s

    d u e t o t h i s p r o b l e m . I n e v a l u a t i n g t h i s a s a p o t e n -

    t i a l p r o b l e m , o n e c a n c o n s i d e r t h e r e l a t i o n s h i p

    b e t w e e n t h e z o n e o f s o i l c a r b o n a t e f o r m a t i o n a n d

    t h e s e d i m e n t a t i o n r a t e . S o il c a r b o n a t e h o r i z o n s a r e

    g e n e r a l l y l es s t h a n o n e m e t e r t h i c k ; p e r i o d s o f

    c l i m a t i c c h a n g e a r e o n t h e o r d e r o f 1 0 , 0 0 0 y e a r s o r

    m o r e . S t u d i e s o f t e r r e s t r i a l s e q u e n c e s i n A f r i c a [ 2 5]

    a n d N o r t h A m e r i c a [ 5 8 ] s h o w t h a t i n t e r v a l s o f

    c l i m a t i c c h a n g e m a y b e r a p i d ( < 5 0 , 0 0 0 y e a r s ) b u t

    l o n g i n t e r v a l s o f r e l a t i v e l y c o n s t a n t c l i m a t i c c o n d i -

    t i o n s ( 4 0 0 , 0 0 0 y e a r s ) m a y p e r s i s t . S e d i m e n t a t i o n

    r a t e s m u s t t a k e t h i s i n t o a c c o u n t : v e r y lo w s e d i-

    m e n t a t i o n r a t e s ( le ss th a n 1 c m / 1 0 0 0 y e a r s ) m a y

    h a v e a n i s o t o p i c r e c o r d t h a t s p a n s s e v e r a l d i f f e r e n t

    237

    c l i m a t i c r e g i m e s ; t h i s i s p r o b a b l y t h e c a s e f o r

    m a n y c a lc r e te s . H i g h e r s e d i m e n t a t i o n r a t e s ( g r e a t er

    t h a n 1 0 c m / 1 0 0 0 y e a r s ) m a y r e s u l t i n t h e p r e -

    s e r v a t i o n o f s o i l c a r b o n a t e t h a t r e t a i n s c l i m a t i c

    i n f o r m a t i o n o f a l i m i t e d t i m e s p a n .

    D i a g e n e t i c e f f e c t s a r e a l s o n o t e a s i l y e v a l u a t e d

    a t t h i s t i m e . T h e c a r b o n a t e p r e c i p i t a t i o n a n d p a r -

    t i a l r ed i s so lu t ion in so i l s i s mos t s ens i t ive in the A

    a n d B h o r i z o n s o f s o i l s ; c h a n g e s i n P ( C O 2 ) a n d

    w a t e r l o s s d u e t o e v a p o t r a n s p i r a t i o n a r e m i n i m a l

    b e l o w t h e B h o r i z o n . T h e p r e s e n c e o f m i c r i t e i n

    p a l e o s o l s i n d i c a t e s t h a t m i n i m a l r e c r y s t a l l i z a t i o n

    h a s o c c u r r e d . C o - e x i s ti n g m i c r i te a n d s p a r it e f r o m

    b u r i e d p a l e o s o l n o d u l e s i n E o c e n e s e d i m e n t s i n

    W y o m i n g s h o w e d t h a t 8 ~ 3 C v a l u e s a r e e s s e nt i al ly

    u n c h a n g e d b y r e c r y s ta l l iz a t i o n b u t 8 1 S O v a l u e s

    w e r e o f t e n 4 - 8 ~ d e p l e t e d i n 1 8 0 in t h e s p a r i t e

    ( u n p u b l i s h e d d a t a ) . P e d o g e n i c c a r b o n a t e s f r o m

    O l d u v a i G o r g e s h o w a n e x c e l le n t r e l a t io n s h i p w i t h

    t i m e [ 25 ]. T h e p e r s i s t e n c e o f 6 1 3C a n d 6 X SO v a l u e s

    n o t c o m p a t i b l e w i t h t o d a y ' s c l i m a t e , a n d t h e e x c e l -

    l e n t c o r r e s p o n d e n c e b e t w e e n 1 4 C a g e s o n c a l c r e t e s

    a n d o n a s s o c i a t e d o r g a n i c m a t e r i a l a t O l d u v a i

    G o r g e [ 2 5 ] i s e v i d e n c e t h a t i n s o m e c a s e s d i -

    a g e n e t i c a l t e r a t i o n d o e s n o t a p p e a r t o b e i m -

    p o r t a n t .

    4 . o n c l u s i o n s

    T h i s s t u d y i n d i c a te s t h a t t h e o x y g e n a n d c a r b o n

    i s o t o p i c c o m p o s i t i o n o f s o il c a r b o n a t e i s r e l a te d t o

    t h e i s o t o p ic c o m p o s i t i o n o f m e t e o r i c w a t e r a n d t o

    t h e p r o p o r t i o n o f C 4 b i o m a s s p r e s e n t. B e c a u s e o f

    t h i s , s o i l c a r b o n a t e c a n b e a n i m p o r t a n t p a l e o c l i -

    m a t i c a n d p a l e o e c o l o g i c i n d i c a t o r . B e c a u s e t h e

    p r o p o r t i o n o f C 4 b i o m a s s is r e l at e d t o t e m p e r a t u r e

    a n d b e c a u s e t h e o x y g e n is o t o p i c c o m p o s i t i o n o f

    m e t e o r i c w a t e r is r e l a t e d t o t e m p e r a t u r e , a p o s i t i v e

    c o r r e l a t i o n b e t w e e n 6 1 3 C a n d 6 1 8 0 i n s o i l

    c a r b o n a t e s i s s o m e t i m e s f o u n d . M o n s o o n a l ,

    c o a s t a l , a n d p e r i g l a c i a l c l i m a t e s h a v e d i f f e r e n t 6 13 C

    a n d 8 1 S O r e l a ti o n s h i p s b e c a u s e o f d i f f e r e n c e s in

    t h e i s o t o p i c c o m p o s i t i o n o f m e t e o r i c w a t e r s i n

    m o n s o o n s , i n f l u e n c e s o f t h e o c e a n s , a n d l o w s o i l

    r e s p i r a t i o n r a t e s , r e s p e c t i v e l y .

    I n a d d i t i o n , t h i s a n a l y s i s i n d i c a t e s t h a t t h e o b -

    s e r v e d d i f f e r e n c e s i n 8 1 3 C c o n t e n t s o f s o i l

  • 8/10/2019 Cerling_1984_soilCO3andclimateCalcrete.pdf

    10/12

    238

    c a r b o n a t e s i s n o t d u e t o c a r b o n a t e f o r m a t i o n i n a

    c l o s e d s y s t e m , b u t r a t h e r t h a t d i f f e r e n c e s i n t h e

    i s o t o p i c c o m p o s i t i o n o f s o il C O 2 c a n r e s u l t f r o m

    c h a n g e s i n t h e s oi l r e s p i r a t i o n r a t e a n d c h a n g e s i n

    t h e p r o p o r t i o n o f C 4 b i o m a s s s e a s o n a l l y o r o v e r a

    l o n g t i m e i n te r v a l . T h e o b s e r v e d d i f f e r e n c e b e -

    t w e e n t h e i s o t o p i c c o m p o s i t i o n o f s o il c a r b o n d i -

    o x i d e a n d t h e a s s o c i a t e d o r g a n i c m a t t e r i n s o il i s

    e x p e c t e d b e c a u s e o f t h e d i f f e r e n c e i n d i f fu s i o n

    c o e f f i c i e n t s f o r 3COz and 1 2 C O 2. I n a d d i t i o n , t h e

    p r e s e n c e o f a h i g h a t m o s p h e r i c c o m p o n e n t i n s o m e

    s o il c a r b o n a t e s s u g g e s t s t h a t f r e e z i n g o f s o il s o l u -

    t i o n s m a y b e a n a d d i t i o n a l c a r b o n a t e f o r m a t i o n

    m e c h a n i s m .

    cknowledgements

    G . W . C o x , S . G r e e n , R i . H a y , J . L . R i c h a r d -

    s o n , a n d R . J . S t. A r n a u d p r o v i d e d s o m e o f t h e

    m o d e r n c a r b o n a t e s u s e d in th i s s t u d y ; T . M . B o w n

    p r o v i d e d a s s i s t a n c e in t h e f ie l d ; J . R . B o w m a n a n d

    R . L a m b e r t p r o v i d e d l a b o r a t o r y a s s i s t a n c e . I t h a n k

    F . H . B r o w n , M . C . M o n a g h a n , a n d W . T . P a r ry fo r

    m a n y h e l p f u l d i s c u s s i o n s . R e v i e w e r s i m p r o v e d t h e

    c l a r i t y o f th i s m a n u s c r i p t . T h i s w o r k ( i n c l u d i n g

    p a l e o s o l s ) w a s s u p p o r t e d b y t h e L . S .B . L e a k e y

    F o u n d a t i o n , t h e F o u n d a t i o n f o r R e s e a r c h i n t h e

    O r i g i n o f M a n , t h e N a t i o n a l S c i e n c e F o u n d a t i o n

    ( B N S - 8 0 0 7 3 5 4 a n d B N S - 8 2 1 0 7 3 5 ) , a n d t h e U . S .

    G e o l o g i c a l S u r v e y ( g r a n t to T .M . B o w n ) .

    ppendix I

    (1) Olduvai Gorge Tanzania: 1.5 c m th ic k l a m ina r c a lc re te

    f o r m e d i n a e o l i a n t u ff p r i o r t o d e p o s i t io n o f t h e N a m o r o d A s h

    [ 2 3 - 2 5 ]. C a l c r e t es a t O l d u v a i G o r g e h a v e b e e n s h o w n t o f o r m

    ve ry quic kly be c a use of the i r h ighly r e a c t ive pa re nt m a te r ia l

    [24] . Dom ina nt gra s s spe c ie s inc lude Digitaria macroblephara

    a n d Sporabolus f imbriatus [ 2 6 ] . O l d u v a i G o r g e h a s a m e a n

    a n n u a l t e m p e r a t u r e o f a b o u t 2 3 C .

    (2) Laetoli Tanzania: 1 c m n o d u l e s f r o m b l a c k c o t t o n s o il

    (ve r t iso l ) . Thi s s i t e is on the e dge of the Se re nge t i P la in b ut i s

    5 - 6 C c o o l e r t h a n O l d u v a i G o r g e b e c a u s e o f i ts h i g h e r e le v a -

    t ion of a bo ut 1800 m . Ve g e ta t ion i s gra s s la nd wi th som e Ac ac ia

    drepanolobium the whis t l ing thorn .

    (3) Nguu Kenya: 1 m m n o d u l e s f r o m b l a c k c o t t o n s o i l

    (ve r t i so l ) . Ve ge ta t ion i s gra s s la nd wi th som e Acacia drepano-

    lobiurn. M e a n a n n u a l t e m p e r a t u r e i s a b o u t 2 3 C .

    (4) The Netherlands: S a l o m o n s a n d M o o k [ 1 9 ] r e p o r t e d o n

    loe s s nodule s f rom the Ne the r la nds . The a ge of nodule form a -

    t ion i s La te P le i s toc e ne or Holoc e ne .

    (5) Israel: Ma g a r i t z e t a l . [18] ha ve s tudie d so i l c a rbon a te s

    f rom the c oa s ta l p la in of I s r a e l . Sa m ple s quote d in th i s s tudy

    inc lude only those so i l c a rbona te s tha t ha d 14C a ge s l e s s tha n

    10,000 B.P.

    (6) Iowa U.S.A.: Loe ss nodule s f rom the oxid iz e d a nd

    unle a c he d z one of Wisc ons in loe s s we re c o l l e c te d f rom Loga n,

    I o w a . C a r b o n a t e c o n t e n t o f t h e p a r e n t m a t e r i a l i s a b o u t 5

    Ca C O 3 [27] , bu t the loe ss nodule s a pproa c h 100 c a lc it e . Loe ss

    de pos i t ion c e a se d a bout 14 ,000 B .P . in Iowa [27] ; s inc e the se

    nodule s we re f rom high in the loe s s prof i l e , i t i s p re sum e d tha t

    the y a re of a bout th i s t im e or l a te r . Argum e nts of Ruhe [27]

    s h o w t h a t t h e o x i d i z e d a n d u n l e a c h e d z o n e m u s t h a v e f o r m e d

    before 6800 B.P. Boute loua Andropogon Agropyron a n d St ipa

    a re im por ta n t e le m e nts of th i s pra i r i e f lora [10 ,32] . Thi s a re a

    h a s a m e a n a n n u a l t e m p e r a t u r e o f a b o u t 1 1 C .

    (7) North Dakota U.S.A. : The Wi l l i a m s so i l s e ri e s c onta ins

    1 m m soi l c a rbona te nodule s ; th i s so i l i s form e d on Wisc ons in

    gla c ial ti l l tha t ha s a bout 5 de t r i t a t c a rbo na te in the pa re n t

    m a te r ia l . Thi s i s in the m ixe d-gra s s pra i r i e of c e nt r a l Nor th

    A m e r i c a ; i t h a s a m e a n a n n u a l t e m p e r a t u r e o f a b o u t 5 C .

    (8) Saskatchewan Canada: Sa m ple s we re t a ke n f rom thre e

    di f f e re nt so i l s in c e nt r a l Sa ska tc he w a n; de ta i l s of the se so i l s a re

    d i sc usse d in S t . Arn a ud [28] . The p a re nt m a te r ia l c onta in s a

    fe w pe rc e nt de t r i t a l c a rbona te ; 14C da te s on d i f f e re nt so i l s i z e

    f r a c t ions show d e c re a s ing a ge wi th d e c re a s ing pa r t i c le s iz e . The

    le s s tha n 2 /~ m s iz e f r a c t ion y ie lds 14C a ge s of 1595 -7200 B .P .,

    whe re a s the c oa r se s i l t a nd sa nd s iz e f r a c t ion y ie ld a ge s of

    > 30,000 B.P. On ly car bo nate s in the less than 2 ~tm s ize

    f ra c t ion a re r e por te d he re . A l l so i l s we re form e d on g la c ia l

    de pos i t s . Thi s pra i r i e s i t e ha s a m e a n a nnua l t e m pe ra ture of

    a b o u t 2 C .

    (9) Alaska U.S.A.: C a r b o n a t e c e m e n t e d s a n d d u n e s h a v e

    b e e n r e p o r t e d a t l o n g i t u d e 1 5 8 W a n d l a t i t u d e 6 7 N [ 2 9 ]. S a n d

    f rom the se dune s doe s not ha ve c a lc i t e pre se nt , a l though a

    s ta b i l i z e d dune f i e ld som e 25 km di s ta n t i s r e por te d to ha ve

    s o m e d e t r i ta l c a r b o n a t e p r e s e n t [ 2 9 ] . C a r b o n a t e f o r m a t i o n i s

    t h o u g h t t o h a v e t a k e n p l a c e s in c e o r d u r i n g l a t e W i s c o n s i n t i m e

    [ 29 ]. E s ti m a t e d m e a n a n n u a l t e m p e r a t u r e is a b o u t - 7 C .

    (10) Utah U.S.A.: L a m i n a r c a l c r e t e c o a t i n g b o u l d e r n e a r

    T i n t i c , U t a h . T h i s d e s e r t g r a ss l a n d h a s a m e a n a n n u a l t e m p e r a -

    t u r e o f a b o u t 7 C .

    (11) Wyoming U.S.A. I : L a m i n a r c a l cr e t e c o at i n g s o n p e b -

    b le s in pos t g la c ia l f i l l o r a l luv ium a t a bout 2500 m e le va t ion .

    Pe bble s we re a bout 20 c m be low the sur fa c e . Thi s a re a ha s a n

    e s t i m a t e d m e a n a n n u a l t e m p e r a t u r e o f a b o u t 4 C . T h i s i s a n

    a lp ine gra s s la nd .

    (12) H@oming U.S.A. 11: La m ina r c a lc re te c oa t ings on

    o r t h o q u a r t z i t e p e b b l e s o n p o s t g l a c i a l a l l u v i u m a t a b o u t 2 0 0 0

    m e t e r s e l ev a t io n . E s t i m a t e d m e a n a n n u a l t e m p e r a t u r e i s a b o u t

    6C.

    (13) Paleosol carbonates: Pa le osol c a rbona te s f rom bur ie d

    s o i l s i n E o c e n e s e d i m e n t s i n W y o m i n g ( U . S . A . ) a n d f r o m

    Pl ioc e ne a nd P le i s toc e ne se dim e nts in Ke nya , Spa in , a nd

    Ta nz a nia a l so ha ve be e n a na lyz e d . O the r pa le osol a nd so i l

    c a rbo na te s f rom l i t e r a ture sourc e s a re d i sc usse d a s we l l.

  • 8/10/2019 Cerling_1984_soilCO3andclimateCalcrete.pdf

    11/12

    eferences

    1 P.W. Birkeland, Pedology, Weathering , and Geomorpho-

    logical Research, Oxford Universi ty Press, New York, N.Y.,

    1974.

    2 H. Jenny, The Soil Resource, Springer-Verlag, Berlin, 1980.

    3 W. Dansgaard, Stable isotopes in precipitation, Tellus 16,

    436-468, 1964.

    4 J.R. Gat, The iso topes of hydrogen and oxygen in precipita-

    tion, in: Handbook of Environmental Isotope Geochem-

    istry, 1. The Terrestrial Environment, A, P. Fritz and J.Ch.

    Fontes, eds., pp. 21-47, Elsevier, Amsterdam, 1980.

    5 Y. Yurtsever and J.R. Gat, Atmospheric waters, Int. At.

    Energy Agency, Tech. Rep. Ser. 210, 103-142, 1981.

    6 E.M. Galimov, Carbon iso topes in soil CO2, Geochem. Int.,

    3, 889-897, 1966.

    7 C.T. Rightmire and B.B. Hanshaw, Relationship between

    the carbon isotope composi tion of soil CO 2 and dissolved

    carbonate species in groundwater, Water Resour. Res. 9,

    958-967, 1973.

    8 C.T. Rightmire, Seasonal variation in Pco2 and

    3C content

    of soil atmosphere, Water Resour. Res. 14, 691-692, 1978.

    9 H. Dorr and K.O. Munnich, Carbon-14 and carbon-13 in

    soil COz, Rad iocarbon 22, 909-918, 1980.

    10 D.J. Ode, L.L. Tieszen and J.C. Lerman, The seasonal

    contribution of C 3 and C4 plant species to primary produc-

    tion in a mixed prairie, Ecology, 61, 1304-1311, 1980.

    11 P. Deines, The isotopic composition of reduced organic

    carbon, in: Handbook of Environmental Isotope Geochem-

    istry, 1. The Terrestrial Environment, A, P. Fritz and J.Ch.

    Fontes, eds., pp. 329-406, Elsevier, Amsterdam, 1980.

    12 J.S. Singh and S.R. Gupta, Plant decomposit ion and soil

    respiration in terrestrial ecosystems, Bot. Rev., 43: 449-528,

    1977.

    13 W.H. Schlesinger, Carbon balance in terrestrial detritus,

    Annu. Rev. Ecol. Syst. 8, 51-81, 1977.

    14 R.J. Arkley, Calcula tion of carbonate and water movement

    in soil from climatic data, Soil Sci. 96, 239-248, 1963.

    15 A. Goudie, Duricrusts in Tropical and Subtropical Environ-

    ments, Oxford University Press, Oxford, 1973.

    16 L.H. Gile, J.W. Hawley and R.B. Grossman, Soils and

    geomorphology in the Basin and Range area of southern

    New Mex ico- -Gui debo ok to the Desert Project, N.M. Bur.

    Mines Mineral. Res. Mem. 39, 1981.

    17 M. Magaritz and A.J. Amiel, Calcium car bona te in calcare-

    ous soil from the Jordon Valley, Israel: its origin revealed

    by the stable carbon isotope method, Soil Sci. Soc. Am. J.,

    44, 1059-1062, 1980.

    18 M. Magaritz, A. Kaufman and D.H. Yaalon, Calcium

    carbonate nodules in

    soils:

    180/160 and a3C/12C and

    4C

    contents, Geoderma 25, 157-172, 1981.

    19 W. Salomons and W.G. Mook, Isotope chemistry of

    carbonate precipitation and dissolution in soils, Soil Sci.

    122, 15-24, 1976.

    20 W. Salomons, A. Goudie and W.G. Mook, Isotopic com-

    position of calcrete deposits from Europe, Africa and India,

    Earth Surface Processes 3, 43-57, 1978.

    239

    21 M.C. Rabenhors t, L.P. Wilding and L.T. West, Identifica -

    tion of pedogenic carbonates using stable carbon isotope

    and microfabric analyses, Soil Sci. Soc. Am. ,l., 48, 125-132,

    1984.

    22 L. Dever, R. Durand, J.Ch. Fontes and P. Vachier, Etude

    prdogrnrtique et isotopique des nroformations de calcite

    darts un sol sur craie--Caractrristiques et origines, Geo-

    chim. Cosmochim. Acta 47, 2079-2090, 1983.

    23 R.L. Hay, Geology of the Olduvai Gorge, University of

    California Press, Berkeley, Calif., 1976.

    24 R.L. Hay and R.J. Reeder, Calcretes of Olduvai Gorge and

    the Ndolanya Beds of northern Tanzania, Sedimentology

    25, 649-673, 1978.

    25 T.E. Cerling and R.L. Hay, An isotopic study of paleosol

    carbonates from Olduvai Gorge, submitted to Quat. Res.

    26 H. Kruuk, The Spot ted Hyena, Universi ty of Chicago Press,

    Chicago, IlL, 1972.

    27 R.V. Ruhe, Quaternary Landscapes in Iowa, Iowa State

    University Press, Ames, Iowa, 1969.

    28 R.J. St. Arnaud, Nature and dist ribution of secondary soil

    carbonates within landscapes in relation to soluble

    Mg /C a -- ratios, Can. J. Soil Sci. 59, 87-98, 1979.

    29 G.W. Cox and W.T. Lawrence, Cemented horizon in sub-

    arctic Alaskan sand dunes, Am. ,l. Sci. 283, 369-373, 1983.

    30 D.W. Northfelt, M.J. DeNiro and S. Epstein, Hydrogen and

    carbon isotopic ratios of the cellulose nitrate and saponifia-

    ble lipid fractions prepared from annual growth rings of a

    California redwood, Geochim. Cosmochim. Acta 45,

    1895-1898, 1981.

    31

    L L

    Tieszen, M.M. Senyima, S.K. Imbamba and J.H.

    Troughton, The distribution of C 3 and C 4 grasses and

    carbon isotope discrimination along an altitudinal and

    moisture gradient in Kenya, Oecologia 37, 337-350, 1979.

    32 J.A. Teeri and L.G. Stowe, Climate patterns and the distri-

    bution of C 4 grasses in North America, Oecologia 23, 1 12,

    1976.

    33 International Atomic Energy Agency, Statistical Tr eatment

    of Environmental Isotope Data in Precipitation, Int. At.

    Energy Agency, Tech. Rep. Ser. 206, 1981.

    34 D.K. Norman, Petrology and geochemistry of propylitic

    alteration at southwest Tintic, Utah, unpublished M.S. The-

    sis, University of Utah, 1983.

    35 D. Kirkham and W.L. Powers, Advanced Soil Physics,

    Wiley-Interscience, New York, N.Y., 1972.

    36 H. Craig, The geochemistry of the stable carbon isotopes,

    Geochim. Cosmochim. Acta 3, 53-92, 1954.

    37 W..lost, Diffusion in Solids, Liquids, and Gases, 3rd ed.,

    Academic Press, New York, N.Y., 1960.

    38 P. Fritz, E.J. Reardon, J. Barker, R.M. Brown, ,l.A. Cherry,

    R.W.D. Killey and D. McNaughton, The carbon isotope

    geochemistry of a small g roundwater system in northeaster n

    Ontario, Water Resour. Res. 14, 1059-1067, 1978.

    39 E.J. Reardon, G.B. Allison and P. Fritz, Seasonal chemical

    and isotopic variations of soil CO z at Trout Creek, Ontario,

    ,l. Hydrol. 43, 355-371, 1979.

    40 C.B. Parada, A. Long and S.N. Davis, Stable-isotopic com-

    position of soil carbon dioxide in the Tucson Basin, Arizona,

    U.S.A., Iso tope Geosci. 1, 219-236, 1983.

  • 8/10/2019 Cerling_1984_soilCO3andclimateCalcrete.pdf

    12/12

    240

    41 G .A . Buya novsky a nd G .H . Wa gne r , Annua l c yc le s of

    carbon dioxide level in soi l a ir , Soil Sci . Am. J . 47,

    1139-1145, 1983.

    42 L .W. Pa rke r , J. Mi l l e r , Y . S te inbe rge r a nd W.G. W hi t ford ,

    Soil r e sp i r a t ion in a C hih ua h ua n de se r t r a nge la n d , Soi l B io l .

    B ioc he m . 15 , 303-309, 1983,

    43 C .L . Kuc e ra a nd D .L . K i rkha m , Soil r e sp i r a t ion s tudie s in

    ta l lgra s s pra i r i e in M is sour i , Ec ology 52 , 912-915, 1971.

    44 W.V. Brown, The Kra nz syndrom e a nd i t s subtype s in gra s s

    sys te m a t ic s , Me m . Tor re y Bot . C lub 23 , 1-97 , 1977.

    4 5 B . N . S m i t h a n d W . V . B r o w n , T h e K r a n z s y n d r o m e i n t h e

    G r a m i n e a e a s i n d i c a t e d b y c a r b o n i s o t o p i c r a t i o s , A m . J .

    Bot , 60, 505-513, 1973.

    46 K . Winte r , J .H . Tro ugh ton a n d K .A . Ca rd , 813C va lue s of

    gra s s spe c ie s c o l l e c te d in the nor the rn Sa ha ra De se r t ,

    Oe c ologia 25 , 115-123, 1976.

    47 J .C. Vogel , A. Fu ls and R.P. Ell is, The geog raph ica l dis tr i -

    but ion of Kra nz gra s se s in South Af r ic a , S . Af r . J . Sc i . 74 ,

    209-215, 1978.

    48 L .O . S te rnbe rg , M. J . De Niro a nd I .P . T ing , Ca rbon, hydro-

    ge n , a nd oxyge n i so tope r a t ios of c e l lu lose f rom pla nt s

    ha ving in te rm e dia ry photosynthe t i c m ode s , P la n t . Phys io l .

    74, 104-107, 1984.

    49 W.S. Broe c ke r a nd T . -H . Pe ng, Tra c e r s in the Se a , E ld ig io

    Press , Pal isades , N.Y. , 1982.

    5 0 A . A a r o n s o h n , R e l i q u i a e A a r o n s o h n i a n a e I I F l o r u l a

    Cis iordanica , Bull . Soc . Bot . Geneve 31, 1940.

    51 D .A . L iv ings ton e a nd W .D. C la yton , An a l t i tud ina l c l ine in

    t ropic a l Af r ic a n gra s s f lora s a nd i t s pa le oe c ologic a l s igni fi -

    cance , Quat . Res . 13, 392-402, 1980.

    52 P .W. Rund e l , T he e c ologic al d i s t r ib u t ion of C 4 a nd C 3

    gra s se s in the Ha wa i ia n I s l a nds , Oe c ologia 45~ 354-359,

    1980.

    53 J .V . Turne r , K ine t i c f r a c t iona t ion of c a rbon-13 dur in g

    c a l c i u m c a r b o n a t e p r e c i p i t a t i o n , G e o c h i m . C o s m o c h i m .

    Ac ta 46 , 1183-1191, 1982.

    54 Y . Bot t inga , Ca lc ula te d f r a c t ion a t ion f a c tor s for c a rbo n a nd

    h y d r o g e n i s o t o p e e x c h a n g e i n t h e s y s t e m c a l c i t e - c a r b o n

    d i o x i d e - g r a p h i t e - m e t h a n e - h y d r o g e n - w a t e r v a p o r , G e o -

    c him . Cosm oc him . Ac ta 33 , 49-64 , 1969.

    55 C .A . B la c k , Soi l -P la nt Re la t ionships , 2nd e d . , John Wi le y

    a nd Sons , Ne w York , N .Y . , 1968.

    56 J .R . Ga t , Groundwa te r , In t . A t . Ene rgy Age nc y, Te c h . Re p.

    Ser . 210, 223-240, 1981.

    5 7 B . N . S m i t h a n d T . W . B o u t t o n , E n v i r o n m e n t a l in f l u e n c es o n

    ~ 3C/~ 2C ra t ios a nd C 4 photo synthe s i s , in : Pho tosynthe s i s

    IV , G . Akoyunoglou , e d . , pp . 255 262. Ba la ba u In t . Sc i .

    Serv. , Philadelphia , Pa . , 1981.

    58 G .A . Sm i th , Pa le ohydrologic r e g im e s in the southwe s te rn

    Gre a t Ba s in , 0-3 .2 M.y . a go , c om pa re d wi th o the r r e c ords

    of g lob a l c l im a te , Qua t .Re s . 22 , 1-17 , 1984.

    59 H . Cra ig , The m e a sure m e nt of oxyge n pa le o te m pe ra ture s ,

    Spole to Conf . on S ta ble I so tope s in Oc e a nogra phic S tudie s

    a nd Pa le ote m pe ra ture s , P i sa , 1965.