fourier series

74
Fourier Series 主主主 主主主

Upload: yvon

Post on 22-Feb-2016

116 views

Category:

Documents


1 download

DESCRIPTION

Fourier Series. 主講者:虞台文. Content. Periodic Functions Fourier Series Complex Form of the Fourier Series Impulse Train Analysis of Periodic Waveforms Half-Range Expansion Least Mean-Square Error Approximation. Fourier Series. Periodic Functions. The Mathematic Formulation. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fourier Series

Fourier Series

主講者:虞台文

Page 2: Fourier Series

ContentPeriodic FunctionsFourier SeriesComplex Form of the Fourier Series Impulse TrainAnalysis of Periodic WaveformsHalf-Range ExpansionLeast Mean-Square Error Approximation

Page 3: Fourier Series

Fourier Series

Periodic Functions

Page 4: Fourier Series

The Mathematic Formulation Any function that satisfies

( ) ( )f t f t T

where T is a constant and is called the period of the function.

Page 5: Fourier Series

Example:

4cos

3cos)( tttf Find its period.

)()( Ttftf )(41cos)(

31cos

4cos

3cos TtTttt

Fact: )2cos(cos m

mT 23

nT 24

mT 6

nT 824T smallest T

Page 6: Fourier Series

Example:

tttf 21 coscos)( Find its period.

)()( Ttftf )(cos)(coscoscos 2121 TtTttt

mT 21

nT 22

nm

2

1

2

1

must be a

rational number

Page 7: Fourier Series

Example:tttf )10cos(10cos)(

Is this function a periodic one?

1010

2

1 not a rational number

Page 8: Fourier Series

Fourier Series

Fourier Series

Page 9: Fourier Series

Introduction Decompose a periodic input signal into

primitive periodic components.

A periodic sequence

T 2T 3T

t

f(t)

Page 10: Fourier Series

Synthesis

Tntb

Tntaatf

nn

nn

2sin2cos2

)(11

0 DC Part Even Part Odd Part

T is a period of all the above signals

)sin()cos(2

)( 01

01

0 tnbtnaatfn

nn

n

Let 0=2/T.

Page 11: Fourier Series

Orthogonal FunctionsCall a set of functions {k} orthogonal

on an interval a < t < b if it satisfies

nmrnm

dtttn

b

a nm

0)()(

Page 12: Fourier Series

Orthogonal set of Sinusoidal Functions

Define 0=2/T.0 ,0)cos(

2/

2/ 0 mdttmT

T0 ,0)sin(

2/

2/ 0 mdttmT

T

nmTnm

dttntmT

T 2/0

)cos()cos(2/

2/ 00

nmTnm

dttntmT

T 2/0

)sin()sin(2/

2/ 00

nmdttntmT

T and allfor ,0)cos()sin(

2/

2/ 00

We now prove this one

Page 13: Fourier Series

Proofdttntm

T

T 2/

2/ 00 )cos()cos(

0

)]cos()[cos(21coscos

dttnmdttnmT

T

T

T

2/

2/ 0

2/

2/ 0 ])cos[(21])cos[(

21

2/

2/00

2/

2/00

])sin[()(

121])sin[(

)(1

21 T

T

T

Ttnm

nmtnm

nm

m n

])sin[(2)(

121])sin[(2

)(1

21

00

nmnm

nmnm

0

0

Page 14: Fourier Series

Proofdttntm

T

T 2/

2/ 00 )cos()cos(

0

)]cos()[cos(21coscos

dttmT

T 2/

2/ 02 )(cos

2/

2/0

0

2/

2/

]2sin4

121

T

T

T

T

tmm

t

m = n

2T

]2cos1[21cos2

dttmT

T 2/

2/ 0 ]2cos1[21

nmTnm

dttntmT

T 2/0

)cos()cos(2/

2/ 00

Page 15: Fourier Series

Orthogonal set of Sinusoidal Functions

Define 0=2/T.0 ,0)cos(

2/

2/ 0 mdttmT

T0 ,0)sin(

2/

2/ 0 mdttmT

T

nmTnm

dttntmT

T 2/0

)cos()cos(2/

2/ 00

nmTnm

dttntmT

T 2/0

)sin()sin(2/

2/ 00

nmdttntmT

T and allfor ,0)cos()sin(

2/

2/ 00

,3sin,2sin,sin,3cos,2cos,cos

,1

000

000

tttttt

an orthogonal set.

Page 16: Fourier Series

Decomposition

dttfT

aTt

t

0

0

)(20

,2,1 cos)(20

0

0

ntdtntfT

aTt

tn

,2,1 sin)(20

0

0

ntdtntfT

bTt

tn

)sin()cos(2

)( 01

01

0 tnbtnaatfn

nn

n

Page 17: Fourier Series

ProofUse the following facts:

0 ,0)cos(2/

2/ 0 mdttmT

T0 ,0)sin(

2/

2/ 0 mdttmT

T

nmTnm

dttntmT

T 2/0

)cos()cos(2/

2/ 00

nmTnm

dttntmT

T 2/0

)sin()sin(2/

2/ 00

nmdttntmT

T and allfor ,0)cos()sin(

2/

2/ 00

Page 18: Fourier Series

Example (Square Wave)

1122

00

dta

,2,1 0sin1cos22

00

nntn

ntdtan

,6,4,20

,5,3,1/2)1cos(1 cos1sin

22

00

nnn

nn

ntn

ntdtbn

2 3 4 5--2-3-4-5-6

f(t)1

Page 19: Fourier Series

1122

00

dta

,2,1 0sin1cos22

00

nntn

ntdtan

,6,4,20

,5,3,1/2)1cos(1 cos1sin

21

00

nnn

nn

ntn

ntdtbn

2 3 4 5--2-3-4-5-6

f(t)1

Example (Square Wave)

ttttf 5sin

513sin

31sin2

21)(

Page 20: Fourier Series

1122

00

dta

,2,1 0sin1cos22

00

nntn

ntdtan

,6,4,20

,5,3,1/2)1cos(1 cos1sin

21

00

nnn

nn

ntn

ntdtbn

2 3 4 5--2-3-4-5-6

f(t)1

Example (Square Wave)

-0.5

0

0.5

1

1.5

ttttf 5sin

513sin

31sin2

21)(

Page 21: Fourier Series

Harmonics

Tntb

Tntaatf

nn

nn

2sin2cos2

)(11

0

DC Part Even Part Odd Part

T is a period of all the above signals

)sin()cos(2

)( 01

01

0 tnbtnaatfn

nn

n

Page 22: Fourier Series

Harmonics

tnbtnaatfn

nn

n 01

01

0 sincos2

)(

Tf

22 00Define , called the fundamental angular frequency.

0 nnDefine , called the n-th harmonic of the periodic function.

tbtaatf nn

nnn

n

sincos2

)(11

0

Page 23: Fourier Series

Harmonicstbtaatf n

nnn

nn

sincos2

)(11

0

)sincos(2 1

0 tbtaannn

nn

12222

220 sincos2 n

n

nn

nn

nn

nnn t

ba

btba

abaa

1

220 sinsincoscos2 n

nnnnnn ttbaa

)cos(1

0 nn

nn tCC

Page 24: Fourier Series

Amplitudes and Phase Angles

)cos()(1

0 nn

nn tCCtf

20

0aC

22nnn baC

n

nn a

b1tan

harmonic amplitude phase angle

Page 25: Fourier Series

Fourier Series

Complex Form of the Fourier Series

Page 26: Fourier Series

Complex Exponentials

tnjtne tjn00 sincos0

tjntjn eetn 00

21cos 0

tnjtne tjn00 sincos0

tjntjntjntjn eejeej

tn 0000

221sin 0

Page 27: Fourier Series

Complex Form of the Fourier Series

tnbtnaatfn

nn

n 01

01

0 sincos2

)(

tjntjn

nn

tjntjn

nn eebjeeaa

0000

11

0

221

2

1

0 00 )(21)(

21

2 n

tjnnn

tjnnn ejbaejbaa

1

000

n

tjnn

tjnn ececc

)(21

)(212

00

nnn

nnn

jbac

jbac

ac

Page 28: Fourier Series

Complex Form of the Fourier Series

1

000)(

n

tjnn

tjnn ececctf

1

10

00

n

tjnn

n

tjnn ececc

n

tjnnec 0

)(21

)(212

00

nnn

nnn

jbac

jbac

ac

Page 29: Fourier Series

Complex Form of the Fourier Series

2/

2/

00 )(1

2T

Tdttf

Tac

)(21

nnn jbac

2/

2/ 0

2/

2/ 0 sin)(cos)(1 T

T

T

Ttdtntfjtdtntf

T

2/

2/ 00 )sin)(cos(1 T

Tdttnjtntf

T

2/

2/0)(1 T

T

tjn dtetfT

2/

2/0)(1)(

21 T

T

tjnnnn dtetf

Tjbac )(

21

)(212

00

nnn

nnn

jbac

jbac

ac

Page 30: Fourier Series

Complex Form of the Fourier Series

n

tjnnectf 0)(

dtetfT

cT

T

tjnn

2/

2/0)(1

)(21

)(212

00

nnn

nnn

jbac

jbac

ac

If f(t) is real,*nn cc

nn jnnn

jnn ecccecc

|| ,|| *

22

21|||| nnnn bacc

n

nn a

b1tan

,3,2,1 n

00 21 ac

Page 31: Fourier Series

Complex Frequency Spectrann j

nnnj

nn ecccecc

|| ,|| *

22

21|||| nnnn bacc

n

nn a

b1tan ,3,2,1 n

00 21 ac

|cn|

amplitudespectrum

n

phasespectrum

Page 32: Fourier Series

Example

2T

2T

TT2d

t

f(t)A

2d

dteTAc

d

d

tjnn

2/

2/0

2/

2/0

01

d

d

tjnejnT

A

2/

0

2/

0

0011 djndjn ejn

ejnT

A

)2/sin2(10

0

dnjjnT

A

2/sin10

021

dnnT

A

TdnT

dn

TAd

sin

Page 33: Fourier Series

TdnT

dn

TAdcn

sin

82

51

T ,

41 ,

201

0

T

dTd

Example

40 80 120-40 0-120 -80

A/5

50 100 150-50-100-150

Page 34: Fourier Series

TdnT

dn

TAdcn

sin

42

51

T ,

21 ,

201

0

T

dTd

Example

40 80 120-40 0-120 -80

A/10

100 200 300-100-200-300

Page 35: Fourier Series

Example

dteTAc

d tjnn

00

dtjne

jnTA

00

01

00

110

jne

jnTA djn

)1(10

0

djnejnT

A

2/0

sindjne

TdnT

dn

TAd

TT d

t

f(t)A

0

)(1 2/2/2/

0

000 djndjndjn eeejnT

A

Page 36: Fourier Series

Fourier Series

Impulse Train

Page 37: Fourier Series

Dirac Delta Function

000

)(tt

t and 1)(

dtt

0 t

Also called unit impulse function.

Page 38: Fourier Series

Property)0()()(

dttt

)0()()0()0()()()(

dttdttdttt

(t): Test Function

Page 39: Fourier Series

Impulse Train

0 tT 2T 3TT2T3T

n

T nTtt )()(

Page 40: Fourier Series

Fourier Series of the Impulse Train

n

T nTtt )()(T

dttT

aT

T T2)(2 2/

2/0

Tdttnt

Ta

T

T Tn2)cos()(2 2/

2/ 0 0)sin()(2 2/

2/ 0 dttntT

bT

T Tn

n

T tnTT

t 0cos21)(

Page 41: Fourier Series

Complex FormFourier Series of the Impulse Train

Tdtt

Tac

T

T T1)(1

22/

2/0

0

Tdtet

Tc

T

T

tjnTn

1)(1 2/

2/0

n

tjnT e

Tt 0

1)(

n

T nTtt )()(

Page 42: Fourier Series

Fourier Series

Analysis ofPeriodic Waveforms

Page 43: Fourier Series

Waveform SymmetryEven Functions

Odd Functions

)()( tftf

)()( tftf

Page 44: Fourier Series

DecompositionAny function f(t) can be expressed as the

sum of an even function fe(t) and an odd function fo(t).

)()()( tftftf oe

)]()([)( 21 tftftfe

)]()([)( 21 tftftfo

Even Part

Odd Part

Page 45: Fourier Series

Example

000

)(tte

tft

Even Part

Odd Part

00

)(21

21

tete

tf t

t

e

00

)(21

21

tete

tf t

t

o

Page 46: Fourier Series

Half-Wave Symmetry

)()( Ttftf and 2/)( Ttftf

TT/2T/2

Page 47: Fourier Series

Quarter-Wave SymmetryEven Quarter-Wave Symmetry

TT/2T/2

Odd Quarter-Wave Symmetry

TT/2T/2

Page 48: Fourier Series

Hidden Symmetry The following is a asymmetry periodic function:

Adding a constant to get symmetry property.

A

TT

A/2

A/2

TT

Page 49: Fourier Series

Fourier Coefficients of Symmetrical Waveforms

The use of symmetry properties simplifies the calculation of Fourier coefficients.– Even Functions– Odd Functions– Half-Wave– Even Quarter-Wave– Odd Quarter-Wave– Hidden

Page 50: Fourier Series

Fourier Coefficients of Even Functions

)()( tftf

tnaatfn

n 01

0 cos2

)(

2/

0 0 )cos()(4 T

n dttntfT

a

Page 51: Fourier Series

Fourier Coefficients of Even Functions

)()( tftf

tnbtfn

n 01

sin)(

2/

0 0 )sin()(4 T

n dttntfT

b

Page 52: Fourier Series

Fourier Coefficients for Half-Wave Symmetry

)()( Ttftf and 2/)( Ttftf

TT/2T/2

The Fourier series contains only odd harmonics.

Page 53: Fourier Series

Fourier Coefficients for Half-Wave Symmetry

)()( Ttftf and 2/)( Ttftf

)sincos()(1

00

n

nn tnbtnatf

odd for )cos()(4even for 0

2/

0 0 ndttntfT

na T

n

odd for )sin()(4even for 0

2/

0 0 ndttntfT

nb T

n

Page 54: Fourier Series

Fourier Coefficients forEven Quarter-Wave Symmetry

TT/2T/2

])12cos[()( 01

12 tnatfn

n

4/

0 012 ])12cos[()(8 T

n dttntfT

a

Page 55: Fourier Series

Fourier Coefficients forOdd Quarter-Wave Symmetry

])12sin[()( 01

12 tnbtfn

n

4/

0 012 ])12sin[()(8 T

n dttntfT

b

TT/2T/2

Page 56: Fourier Series

ExampleEven Quarter-Wave Symmetry

4/

0 012 ])12cos[()(8 T

n dttntfT

a 4/

0 0 ])12cos[(8 Tdttn

T4/

00

0

])12sin[()12(

8T

tnTn

)12(4)1( 1

nn

TT/2T/2

1

1T T/4T/4

Page 57: Fourier Series

ExampleEven Quarter-Wave Symmetry

4/

0 012 ])12cos[()(8 T

n dttntfT

a 4/

0 0 ])12cos[(8 Tdttn

T4/

00

0

])12sin[()12(

8T

tnTn

)12(4)1( 1

nn

TT/2T/2

1

1T T/4T/4

ttttf 000 5cos

513cos

31cos4)(

Page 58: Fourier Series

Example

TT/2T/2

1

1

T T/4T/4

Odd Quarter-Wave Symmetry

4/

0 012 ])12sin[()(8 T

n dttntfT

b 4/

0 0 ])12sin[(8 Tdttn

T4/

00

0

])12cos[()12(8

T

tnTn

)12(4

n

Page 59: Fourier Series

Example

TT/2T/2

1

1

T T/4T/4

Odd Quarter-Wave Symmetry

4/

0 012 ])12sin[()(8 T

n dttntfT

b 4/

0 0 ])12sin[(8 Tdttn

T4/

00

0

])12cos[()12(8

T

tnTn

)12(4

n

ttttf 000 5sin

513sin

31sin4)(

Page 60: Fourier Series

Fourier Series

Half-Range Expansions

Page 61: Fourier Series

Non-Periodic Function Representation

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

Page 62: Fourier Series

Without Considering Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T

Page 63: Fourier Series

Expansion Into Even Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T=2

Page 64: Fourier Series

Expansion Into Odd Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T=2

Page 65: Fourier Series

Expansion Into Half-Wave Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T=2

Page 66: Fourier Series

Expansion Into Even Quarter-Wave Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T/2=2

T=4

Page 67: Fourier Series

Expansion Into Odd Quarter-Wave Symmetry

A non-periodic function f(t) defined over (0, ) can be expanded into a Fourier series which is defined only in the interval (0, ).

T/2=2 T=4

Page 68: Fourier Series

Fourier Series

Least Mean-Square Error Approximation

Page 69: Fourier Series

Approximation a function

Use

k

nnnk tnbtnaatS

100

0 sincos2

)(

to represent f(t) on interval T/2 < t < T/2.

Define )()()( tStft kk

2/

2/

2)]([1 T

T kk dttT

E Mean-Square Error

Page 70: Fourier Series

Approximation a function

Show that using Sk(t) to represent f(t) has least mean-square property.

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtnaatf

T

Proven by setting Ek/ai = 0 and Ek/bi = 0.

Page 71: Fourier Series

Approximation a function

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtnaatf

T

0)(12

2/

2/0

0

T

Tk dttf

Ta

aE 0cos)(2 2/

2/ 0

T

Tnn

k tdtntfT

aaE

0sin)(2 2/

2/ 0

T

Tnn

k tdtntfT

bbE

Page 72: Fourier Series

Mean-Square Error

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtnaatf

T

2/

2/1

22202 )(

21

4)]([1 T

T

k

nnnk baadttf

TE

Page 73: Fourier Series

Mean-Square Error

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtnaatf

T

2/

2/1

22202 )(

21

4)]([1 T

T

k

nnn baadttf

T

Page 74: Fourier Series

Mean-Square Error

2/

2/

2)]([1 T

T kk dttT

E

2/

2/

2

100

0 sincos2

)(1 T

T

k

nnn dttnbtnaatf

T

2/

2/1

22202 )(

21

4)]([1 T

Tn

nn baadttfT