pc_der_4

Upload: k-vijay-bhaskar-reddy

Post on 07-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 PC_DER_4

    1/47

    Control of Distributed Generation

    Eugeniusz Rosołowski

    Protection and Controlof Distributed Energy Resources

    Chapter 4

    [email protected]

  • 8/19/2019 PC_DER_4

    2/47

    1. Introduction   4. Control of  Distributed Generation

    General Considerations

      From the economical point of view, optimal controlmaximizes the financial return on DG system

    investment.

      The fundamental goal of the control scheme is to

    determine whether or not the on‐site generation

    should be operating during a particular hour.

     Buyback priority is used in cases where the operator

    wishes to produce electricity and sell any or all of the

    produced power back to the utility.

  • 8/19/2019 PC_DER_4

    3/47

    2. DC sources   4. Control of  Distributed Generation

    DC cources interconnetion to the Grid

    A PV or Fuel Cell grid-connected DG system with

    energy storage

  • 8/19/2019 PC_DER_4

    4/47

    2. DC sources   4. Control of  Distributed Generation

    Control of  DC sources interconnetion to the Grid

    Grid-connected power flow control scheme

    through output voltage regulation

  • 8/19/2019 PC_DER_4

    5/47

    3. Wind Turbine   4. Control of  Distributed Generation

    Wind Turbine Structure

    Nelson V., Wind Energy. CRC Press, 2009

  • 8/19/2019 PC_DER_4

    6/47

    3. Wind Turbine   4. Control of  Distributed Generation

    Turbine Regulation

    Pitch controller objectives:

      to regulate aerodynamic torque in above‐rated wind

    speeds;

      to minimize peaks in gearbox torque;

      to avoid excessive pitch activity;

      to minimize tower base loads as far as possible by

    controlling tower vibration, and

      to avoid exacerbating hub and blade root loads.

  • 8/19/2019 PC_DER_4

    7/47

    3. Wind Turbine   4. Control of  Distributed Generation

    Turbine Characteristics

    The power transferred by the turbine blades is given by:

    where: ρ  – air density;

     Ar  – area swept by the rotor;

    V w  – wind velocity;C  p – power coefficient;

     β  – pitch angle.

    3

    2

    1w pr m   V C  AP   ⋅⋅⋅=   ρ 

  • 8/19/2019 PC_DER_4

    8/47

    3. Wind Turbine   4. Control of  Distributed Generation

    Theoretical curves of  torque versus rpm for different wind speeds

  • 8/19/2019 PC_DER_4

    9/47

    3. Wind Turbine   4. Control of  Distributed Generation

    Wind Turbine Control

      A pitch control system is one method to control rpm, start up

    (need high torque), and overspeed.

      The pitch can be changed to maintain a constant rpm for

    synchronous generators. For an induction generator, variable‐

    speed generator that operates over a range of rpm in the run

    position, over this range the tip speed ratio is constant, and

    the unit operates at higher efficiency.

      Doubly fed induction generators have a large rpm range,

    around 50%, and are used because of the increased

    aerodynamic efficiency with blades in the run position for

    large wind turbines.

  • 8/19/2019 PC_DER_4

    10/47

    3. Wind Turbine   4. Control of  Distributed Generation

    Main Control Loop for a Fixed‐speed Pitch‐regulated Turbine

  • 8/19/2019 PC_DER_4

    11/47

  • 8/19/2019 PC_DER_4

    12/47

    3. Wind Turbine   4. Control of  Distributed Generation

    Lightning Protection

    Lightning is a significant potential hazard to wind turbines and thatappropriate protection measures need to be taken. Some years ago,

    it was thought that as the blades of wind turbines are made from

    non‐conducting material (i.e., glass or wood‐epoxy) then it was not

    necessary to provide explicit protection for these types of blades.However, there is now a large body of site experience to show that

    lightning will attach to blades made from these materials and can

    cause catastrophic damage if suitable protection systems have notbeen fitted.

    The main protective measures are good bonding, effective shielding

    and the use of appropriate surge protection devices at the zone

    boundaries.

  • 8/19/2019 PC_DER_4

    13/47

    4. Wind Driven Generators   4. Control of  Distributed Generation

    Type of  Rotating Generators

      Fixed Speed Induction Generator (FSIG).

     Synchronous Generator (SG).

      Permanent Magnet Synchronous Generator (PMSG).

      Doubly‐Fed Induction Generator (DFIG).

  • 8/19/2019 PC_DER_4

    14/47

    4. Wind Driven Generators   4. Control of  Distributed Generation

    Generator as three terminal unit

  • 8/19/2019 PC_DER_4

    15/47

    4. Wind Driven Generators   4. Control of  Distributed Generation

    Turbine Regulation

      DFIG wind turbines with converters rated at about25–30% of the generator rating are becoming

    increasingly popular.

     These studies showed that DFIG‐based wind turbines

    do not have an impact on oscillation, as it has modern

    power electronic devices to perform reactive power

    compensation and smoother grid connection besidesspeed control.

  • 8/19/2019 PC_DER_4

    16/47

    4. Wind Driven Generators   4. Control of  Distributed Generation

    Scheme of  the grid‐connected variable speed wind 

    generator

  • 8/19/2019 PC_DER_4

    17/47

    4. 

    Wind 

    Driven 

    Generators   4. Control of  Distributed Generation

    Scheme of  the grid‐connected variable speed wind 

    generator

  • 8/19/2019 PC_DER_4

    18/47

    5. 

    DFIG   4. Control of  Distributed Generation

    Doubly‐Fed Induction Generator

    DFIG/DFIM

      DFIG‐based wind turbines offer variable speed

    operation, four‐quadrant active and reactive power

    capabilities, lower converter cost, and reduced power

    loss compared to wind turbines using fixed speed

    induction generators or fully‐fed synchronous

    generators with full‐sized converters.

  • 8/19/2019 PC_DER_4

    19/47

    5. 

    DFIG   4. Control of  Distributed Generation

    DFIG Model

    •   Recent interest in distributed generator installation into

    low voltage buses near electrical consumers, has

    created some new challenges for protection engineers

    that are different from traditional radially basedprotection methodologies.

    •  Therefore, typical protection configurations need to be

    re-thought such as re-closures, out-of-step monitoring,

    impedance relay protection zones with the detection of 

    unplanned islanding of distributed generator systems.

  • 8/19/2019 PC_DER_4

    20/47

    5. 

    DFIG   4. Control of  Distributed Generation

    DFIG Model

    General structure of DFIG based Generator 

  • 8/19/2019 PC_DER_4

    21/47

    5. 

    DFIG   4. Control of  Distributed Generation

    DFIG Model

  • 8/19/2019 PC_DER_4

    22/47

    5. 

    DFIG   4. Control of  Distributed Generation

    Available Measurements

    u ABC(s) – 3-phase stator voltage,

    i ABC(s) – 3-phase stator current,

    i ABC(r) – 3-phase stator current,

    ω r  – rotor angular velocity.

  • 8/19/2019 PC_DER_4

    23/47

    5. 

    DFIG   4. Control of  Distributed Generation

    Machine Coordinates System

    3-phase stator coordinates:u ABC(s) – 3-phase stator voltage

    i ABC(s) – 3-phase stator current

      0 stator coordinates:

    iαβ0 – αβ0 stator currentuαβ0 – αβ0 stator voltage

    dq0 rotor coordinates:i

    dq0 – dq0 rotor current

    udq0 – dq0 rotor voltage

    xy stator flux oriented coordinates:

    ixy(s), ixy(r) – xy stator or rotor currents

    uxy(s), uxy(r) – xy stator or rotor voltages

    3-phase rotor coordinates:

    u ABC(r)

     – 3-phase rotor voltage

    i ABC(r) – 3-phase rotor current

  • 8/19/2019 PC_DER_4

    24/47

    5. 

    DFIG   4. Control of  Distributed Generation

    Machine Coordinates System

    Basic transformations:

    ⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢

    −−

    −=

    2

    3

    2

    11

    2

    3

    2

    11

    011

    C

    ⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢

    −−=−

    2

    3

    2

    30

    2

    1

    2

    11

    111

    3

    21C

    ,

     ABC xCx  1

    0

    −=αβ 

    0αβ Cxx   = ABC where:

    Zero-sequence component may be omitted, then:

     β α αβ    x x x   j+=   for voltage, current or flux, stator reference.e

     x xdqγ 

    αβ 

     j

    e=   for voltage, current or flux, rotor reference.sysx

    -s xy   x x x x   sm  je

     j +==   γ αβ )(   for stator voltage, current or flux, stator flux reference.

    ( )ryrxdqr  xy   x x x x

      sme

     je

     j

    +==  −γ γ 

    )(   for rotor voltage, current or flux,stator flux reference.

  • 8/19/2019 PC_DER_4

    25/47

    5. 

    DFIG   4. Control of  Distributed Generation

    Machine Coordinates System

    ωsm  ≈ ω t

  • 8/19/2019 PC_DER_4

    26/47

    5. 

    DFIG   4. Control of  Distributed Generation

    DFIG  – equivalent scheme in dq axis

    ( )   )()()()()()()()(   jd 

    d r dqr dqmsdqsr dqrlsdqslr dqr sdqssdq   ui Li Li

     Li

     Li Ri Ru   ++−−−−−=   ω 

  • 8/19/2019 PC_DER_4

    27/47

    5. 

    DFIG   4. Control of  Distributed Generation,

    Control Algorithm

    •   DFIG control algorithm is based on the observation thatactive and reactive stator power:   Ps,   Qs   may be

    independently defined as the functions of rotor currents

    in xy – coordinates:

    •   In these equations rotor current components can be

    forced by changing the rotor voltage.

    ( )

    ( )   ( )smrxsm

    ssysxsxsys

    rys

    m

    ssysysxsxs

    iiU  L LiuiuQ

    iU  L

     LiuiuP

    −≈−=

    ≈+=

    32

    32

    3

    2

    3

    2

  • 8/19/2019 PC_DER_4

    28/47

    5. 

    DFIG   4. Control

     of 

     Distributed

     Generation,

    Control AlgorithmThe algorithm is as follows:

    1. Read the input measurements: u ABC(s),   i ABC(s),   i ABC(r)  and

    transform its to  coordinates.

    2. Read the rotor velocity   ω r    and calculate the

    instantaneous rotor angle and slip:

    3. Calculate the rotor current in dq coordinates.

    4. Calculated the magnetizing current in xy coordinates:

    0

    0

    d  e

    r e   p   γ τ ω γ    += ∫   r ssl   pω ω ω    −=

     β 

    α 

    s

    m

    srqsmq

    s

    m

    srd smd 

    i L Lii

    i L

     Lii

    −=

    −=22

    smqsmd sm   ii I    +=smd 

    smq

    smi

    iarctg=γ 

  • 8/19/2019 PC_DER_4

    29/47

    5. 

    DFIG   4. Control

     of 

     Distributed

     Generation,

    Control Algorithm5. Calculate the current in xy coordinates:

    6. Perform the PI algorithm for regulation of active and

    reactive power:

    7. Perform the PI algorithm for regulation of rotor voltage:

    sm

    dq xyγ  j

    eii   =

    QQQ

    PPP

    ref 

    ref 

    −=Δ

    −=Δ

    0

    0

    11

    0

    0

    11

    ryref 

     I Pryref 

    rxref 

     I Prxref 

    iPK PK i

    iQK QK i

    +Δ+Δ=

    +Δ+Δ=

    τ 

    τ 

    ryryref ry

    rxrxref rx

    iii

    iii

    −=Δ

    −=Δ

    0

    0

    22

    0

    0

    22

     pry

    ry I ryP pry

     prx

    rx I rxP prx

    uiK iK u

    uiK iK u

    +Δ+Δ=

    +Δ+Δ=

    τ 

    τ 

  • 8/19/2019 PC_DER_4

    30/47

    5. 

    DFIG   4. Control

     of 

     Distributed

     Generation,

    Control Algorithm

    8. Determine the rotor voltage in xy coordinates:

    9. Determine the rotor voltage in 3-phase coordinates:

    10. Apply for controlling the Electronic Converter:

     prydryry

     prxdrxrx

    uuu

    uuu

    +=

    +=

    ( )rxsmr sldry

    ryr sldrx

    i I  Lu

    i Lu

    −=

    −=

    1σ σ ω 

    σ ω 

    where:

    ( )

    )()(

     j

    )()(   er r  ABC 

    r  xyr 

    esm

    αβ 

    γ γ 

    αβ 

    Cuu

    uu

    ==

      −−

    PWM)(   ⇒r  ABC u

  • 8/19/2019 PC_DER_4

    31/47

    5. 

    DFIG   4. Control

     of 

     Distributed

     Generation,

    Control Algorithm

  • 8/19/2019 PC_DER_4

    32/47

    5. 

    DFIG   4. Control

     of 

     Distributed

     Generation,

    Control Algorithm

  • 8/19/2019 PC_DER_4

    33/47

    5. 

    DFIG   4. Control

     of 

     Distributed

     Generation,

    Control Algorithm

  • 8/19/2019 PC_DER_4

    34/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    Comparison of  synchronous (a) and induction (b) generators Short‐circuit currents

    (a)

    (b)

  • 8/19/2019 PC_DER_4

    35/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    DFIG Short‐circuit at the Terminal

    The stator voltage equation of the induction machine isdetermined as follows:

    When the voltage drops to zero (in case of a fault at the

    generator terminals), the stator flux space vector stops

    rotating (dc component). This produces big current

    oscillations in rotor windings and, consistently, high

    voltage in supplying converter scheme.

    Remedium is adequate protection.

    sss

    sss

    i Ru   ψ ω ψ 

     j

    d ++=

  • 8/19/2019 PC_DER_4

    36/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    Grid Code requirements

    The latest grid code requirements specify the behaviourof wind generators when dips occure:

    •  under what type of dips the turbine must remain

    connected to the grid ;• how much reactive power the wind generator must

    provide to the grid in order to contribute to the fault

    clearance.

    Grid Code: a document establishing the rules governing

    the operation, maintenance and development of the power 

    system and sets out the procedures for governing the

    actions of all power system users.

  • 8/19/2019 PC_DER_4

    37/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    Low Voltage Ride‐through (LVRT)

    The LVRT requirements specify the above conditions (thewind generators connection to grid and demands of 

    reactive power).

    The main requirement is the ability of wind generator toremain connected to the grid during and after faults. This

    is known as low voltage ride through ability.

    Different countries define their own Grid Coderequirements.

  • 8/19/2019 PC_DER_4

    38/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    Low Voltage Ride‐through requirements

    for different grid codes

  • 8/19/2019 PC_DER_4

    39/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    DFIG protection methods

    1. Software protection: adequate control of electronicconverters in case of:

    •   unbalance condition (unbalance load or unbalance

    voltage);•   small voltage dip.

    2. Hardware protection:

    •   crowbar activation;

    •   braking chopper;

    •   replacement loads;

    •   series resistors.

  • 8/19/2019 PC_DER_4

    40/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    Crowbar application

  • 8/19/2019 PC_DER_4

    41/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    Breaking chopper application

    Usually applied 

    with a 

    crowbar

  • 8/19/2019 PC_DER_4

    42/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    Replacement loads application

    Usually applied 

    with a 

    crowbar

  • 8/19/2019 PC_DER_4

    43/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    Series resistors application

    Usually installed in a 

    wind 

    farm

  • 8/19/2019 PC_DER_4

    44/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    DFIG Short‐circuit Voltages

  • 8/19/2019 PC_DER_4

    45/47

    6. 

    DFIG 

    Protection   4. Control

     of 

     Distributed

     Generation

    DFIG Short‐circuit Currents

  • 8/19/2019 PC_DER_4

    46/47

    7. 

    Wind 

    Farm   4. Control

     of 

     Distributed

     Generation

    Wind Farm Interconnection

  • 8/19/2019 PC_DER_4

    47/47

    7. 

    Wind 

    Farm   4. Control

     of 

     Distributed

     Generation

    Wind Farm Interconnection

    HVDC Connection of the Off-shore Farm