复 数

42
主主主主主主主主主主主主 主主主 主主主主主主主主 主主主 主主主

Upload: amanda-hatfield

Post on 02-Jan-2016

32 views

Category:

Documents


10 download

DESCRIPTION

复 数. 复数. 主讲人: 镇江市实验高级中学 丁大江. 审稿: 镇江市教研室 黄厚忠 庄志红. 复数. 表示. 运算. 概念. 代数表示. 几何意义. 代数运算. 几何表示. 知识结构图. 高考要求. 1. 了解复数的有关概念及复数的代数表示和几何意义; 2 .掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算; 3 .了解从自然数到复数扩充的基本思想 .. 复数知识梳理. 1. 联系类比 掌握复数. 2. 复数的高考考查形式. 3. 复数问题的思想方法. 4. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 复       数

复 数主讲人: 镇江市实验高级中学 丁大江 审稿:

镇江市教研室 黄厚忠 庄志红

Page 2: 复       数

知识结构图

复数

概念表示 运算

代数表示 几何表示 代数运算 几何意义

Page 3: 复       数

高考要求 1. 了解复数的有关概念及复数的代数表示和

几何意义;

2 .掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算;

3 .了解从自然数到复数扩充的基本思想.

Page 4: 复       数

复数知识梳理复数知识梳理 1

联系类比 掌握复数联系类比 掌握复数 2

复数的高考考查形式复数的高考考查形式 3

复数问题的思想方法复数问题的思想方法 4

讲座内容讲座内容

Page 5: 复       数

知识梳理1. 定义 : 形如 a+bi ( a 、 b R∈ )的数叫做

复数 , 其中 i 是虚数单位;注 :① 复数通常用字母 z 表示,即复数 a+bi

( a 、 b R)∈ 可记作 z =a+bi ( a 、 b∈R ),并把这一形式叫做复数的代数形式

②全体复数所组成的集合叫复数集,记作 C

③ 复数 Z=a+bi (a 、 b R )∈ ,我们把实数a , b 分别叫做复数的实部和虚部.

Page 6: 复       数

2. 复数的分类:

复数 a+bi( a R∈ , b∈R )

0)

0 0)0)

0 0)

b

a bb

a b

实数(

纯虚数( ,虚数(

非纯虚数( ,

db

ca

3. 复数相等: 如果两个复数的如果两个复数的实部实部和和虚部虚部分别相等,分别相等,那么我们就说这两个那么我们就说这两个复数相等,即:复数相等,即:

,,,, Rdcba 若

dicbia 则

知识梳理

Page 7: 复       数

4 . 复数的运算:

(a+bi)(c+di)=ac+bci+adi+bdi2

=(ac - bd)+(bc+ad)i

类似于多项式的加法、减法、乘法运算

( 1 )复数的加法 (a+bi ) + (c+di) = (a+c) + (b+d)i

( 2 )复数的减法 (a+bi ) - (c+di) = (a - c) + (b -

d)i( 3 )复数的乘法

, , , )a b c d R(以下的知识梳理

Page 8: 复       数

4. 复数的运算 ( 4 )复数的除法:

( ) ( ) , , , )a bi

a bi c di a b c d Rc di

))((

))((

dicdic

dicbia

22

)()(

dc

iadbcbdac

即分母实数化

知识梳理

Page 9: 复       数

2(1 ) 2 ;i i ① 2(1 ) 2 .i i

② 1;

1

ii

i

1

.1

ii

i

③ 2 2.c di c di c d

④ 1 3

2 2i 若 , 3 1 则 ,

21 0 ,

2 ,

1.

复数运算的常用结论:

Page 10: 复       数

复数 z=a+bi( a R∈ , b∈R )

有序实数对 (a,b)

直角坐标系中的点 Z(a,b)

x

y

o

b

a

Z(a,b)

建立了平面直角坐标系来表示复数的平面

x 轴 ------ 实轴

y 轴 ------ 虚轴

------ 复平面

一一对应

z=a+bi

知识梳理知识梳理 55. 复数的几何意义复数的几何意义

Page 11: 复       数

xO

z=a+biy

Z (a,b)22 ba

与复数 z=a+bi ( a R∈ , b R∈ )对应的向量 的模 | | ,叫做复数 z=a+bi 的模,即为复数 z=a+bi 在复平面上对应的点 Z(a,b) 到坐标原点的距离

OZ��������������

OZ��������������

| z | =

|||| zz

22 ba

zzzz 22 ||||

复数的模的几何意义 :

Page 12: 复       数

xo

y

Z1(a,b)

Z2(c,d)

Z(a+c,b+d)

OZ1 +OZ2 = OZ

符合向量加法的平行四边形法则

6. 复数加法运算的几何意义

z1+ z2

知识梳理

Page 13: 复       数

xo

y

Z1(a,b)

Z2(c,d)

复数 z2 -z1

向量 Z1Z2

符合向量减法的三角形法则

复数减法运算的几何意义

||zz11--zz22|| 表示什么表示什么 ?? 表示复平面上两点 Z1 ,Z2 的距离

Page 14: 复       数

联系类比,掌握复数 1. 联系数集扩充到实数集,掌握数集扩

充到复数集 数从自然数发展到实数的三次扩充历程都是

因生产、科学发展的需要和数学本身发展的需要而逐步扩充的过程;但实系数一元二次方程 没有实数根,这促使我们将实数集进行扩充,使该问题能得到圆满解决;由此我们引入新数 i ,定义形如

的数叫做复数;从而把数集扩充到复数集 .

012 x

)R,( babia

Page 15: 复       数

1. 联系数集扩充到实数集,掌握数集扩充到复数集

【例 1 】 实数 m 分别取什么数时,复数 z=(1+i)m2+(5 - 2i)m+6 - 15i 是:①实数;②虚数;③纯虚数;④共轭复数的虚部为 12. 分析 :本题是一道考查复数概念的题目,解题的关键是把复数化成 z= )R,( babia

的形式,然后根据复数的分类标准对其实部与虚部进行讨论,由它们满足的条件进行解题 .

联系类比,掌握复数

Page 16: 复       数

【例 1 】 实数 m 分别取什么数时,复数 z=(1+i)m2+(5 - 2i)m+6 - 15i 是:①实数;②虚数;③纯虚数;④共轭复数的虚部为 12.

解析: z=(1+i)m2+(5 - 2i)m+6 - 15i =(m2+5m+6)+(m2 - 2m - 15)i , (m R)∈ ,

①要使 z为实数,必须

R,m

mm ,01522

解得 m=5或 m=- 3.

②要使 z 为虚数,必须 m2 - 2m - 15≠0 ,解得 m≠5 且 m≠ - 3.

联系类比,掌握复数

Page 17: 复       数

【例 1 】 实数 m 分别取什么数时,复数 z=(1+i)m2+(5 - 2i)m+6 - 15i 是:①实数;②虚数;③纯虚数;④共轭复数的虚部为 12.

解: z =(m2+5m+6)+(m2 - 2m - 15)i , (m R)∈ ,

,0152

,0652

2

mm

mm

,53

,23

mm

mm

且或

③要使 z为纯虚数,必须

即 ∴m=- 2.

④要使 z 的共轭复数的虚部为 12 ,必须- (m2 - 2m - 15)=12 ,解得 m=- 1 或 m=3.

联系类比,掌握复数

Page 18: 复       数

【例 1 】 实数 m 分别取什么数时,复数 z=(1+i)m2+(5 - 2i)m+6 - 15i 是:①实数;②虚数;③纯虚数;④共轭复数的虚部为 12.

点评:解决复数概念问题的方法是按照题设条件把复数整理成 z= )R,( babia的形式,明确复数的实部与虚部,由实部与虚部满足的条件,列出方程 (组 )或不等式 (组 ),通过解方程 (组 )或不等式(组 )达到解决问题的目的 .

联系类比,掌握复数

Page 19: 复       数

2. 类比多项式运算,掌握复数运算 两个复数相加、相减、相乘,类似于两个

多项式相加、相减、相乘,只是在所得的结果中要把 i2 换成- 1 ,并且把实部与虚部分别合并 . 【例 2 】若复数 其中 是虚数单位,则复数 的实部为 .

1 24 29 , 6 9 ,z i z i i1 2( )z z i

1 2( ) [(4 29 ) (6 9 )] ( 2 20 ) 20 2z z i i i i i i i 解:【点评】本题考查复数的减法、乘法运算,以及复数实部的概念;类比运算即可 .

- 20

联系类比,掌握复数

Page 20: 复       数

2

( )( ) ( ) ( )

( )( )

a b a b c d ac bc a b d

c dc d c d c d

3.类比分母有理化,掌握复数除法运算在实数运算中,分母有无理数时,我们可以分子、分母同乘以分母的有理化因式进行分母有理化,即:

, , ,a b c d d都是有理数且 为无理数时,有

dic

bia

类似的,复数 a+bi除以复数 c+di的商

联系类比,掌握复数

Page 21: 复       数

dic

bia

类似的,复数 a+bi除以复数 c+di的商

( )( )

( )( )

a bi a bi c di

c di c di c di

2 2 2 2 2 2

( ) ( )ac bd bc ad i ac bd bc adi

c d c d c d

.

( , , , )a b c d R

的 “ ”共轭复数进行 分母实数化 ,即:

可以分子、分母同乘以分母

3. 类比分母有理化,掌握复数除法运算

联系类比,掌握复数

Page 22: 复       数

.

3. 类比分母有理化,掌握复数除法运算

i

i

1

5【例 3】 的值等于 ________.

点评:掌握复数代数形式的加、减、乘、除运算是本章的基础,也是重点,要牢记复数的四种运算法则 .

分析:本题考查复数的除法运算,根据复数的除法运算法则即可解决 .解析:

2

)15()15(

)1)(1(

)1)(5(

1

5 i

ii

ii

i

i

=2+3i.

联系类比,掌握复数

Page 23: 复       数

4. 类比实数的几何意义,掌握复数的几何意义

实数与数轴上的点是一一对应的;类似的,复数 与复平面内的点

是一一对应的 .

)R,( babia

( , )a b

. 2

1 2

m iz

i

( ,m R i【例 4 】复数

在复平面上对应的点不可能位于第 象限 .

为虚数单位 )

4 1,m m

4 0,m 2 1m ( ) 0所以不可能同时有 故对应的点不可能位于第一象限 .

2 1( 4) 2( 1) ,

1 2 5

m iz m m i

i

解:

联系类比,掌握复数

Page 24: 复       数

4. 类比实数的几何意义,掌握复数的几何意义

.

2

1 2

m iz

i

( ,m R i【例 4 】复数

在复平面上对应的点不可能位于第 象限 .

为虚数单位 )

a bi ( , )a b R

点评:本题考查复数的几何意义及复数运算的知识,每一个复数在复平面内都有一个点与之对应.先将复数变形为

(a, b)的形式,再根据 所在的位置求解.

联系类比,掌握复数

Page 25: 复       数

高考考查形式 从近两年我省的高考试题看,高考对于复数

的考查要求较低,试题难度不大,均在“较易”或“中档”的层次,相当数量的题源于教材,几乎都为填空题 . 其中复数的代数运算是年年必考,其试题活而不难,主要考查学生灵活运用知识的能力 . 我们预测 10 年对复数的考查可能出现以下的一些形式:

1 .考查复数的基本概念与运算 ; 2 .考查复数的几何意义; 下面我们举例说明

Page 26: 复       数

高考考查形式 1 .考查复数的基本概念与运算 例 1 .若 (其中 是虚数单位,

是实数),则 .

点评:对复数的基本问题不能放松要求,诸如复数是虚数、纯虚数的条件,复数相等的条件,复数模的几何性质等都要熟练掌握;对复数问题实数化的基本方法要清楚 .

biii 44)2( ib b

解析:∵ ,∴由已知得 ,∴ .

iiiii 84484)2( 2 bii 484 8b

Page 27: 复       数

高考考查形式 2 .考查复数的几何意义 例 2 .满足条件 |z-i|=|3+4i| 的复数 z 在复平面

上对应的点 Z 的轨迹是 . 解析:因为 |z-i|=|3+4i|=5 , ∴复数 z 对应的点 Z 与复数 i 对应的点 (0,1) 之间的距离为 5 , 由圆的定义知,复数 z 在复平面上对应的点 Z 的轨迹是:以复数 i 对应的点 (0,1) 为圆心、5 为半径的圆 .

点评:本题直接利用复数的几何意义求解,对于复数模的问题,一般可化为复平面内两点间的距离来解决 .

Page 28: 复       数

复数问题的思想方法 通过前面的介绍我们知道:高考对于复数

的考查要求较低,试题难度不大,均在“易”或“较易”的层次,相当数量的题源于教材,多为填空题 .

但复数问题往往蕴含以下数学思想方法:①复数问题实数化思想,②坐标化思想,③向量化思想,④图形化思想;我们简称复数问题的“四化”——实数化、坐标化、向量化、图形化 .

Page 29: 复       数

1. 实数化—根据复数相等的定义 解决复数问题,要注意复数问题实数化的

方法,即利用复数相等的概念,把复数问题转化为实数问题,这是解决复数问题的最常用策略 .

【例 1 】设 ( 其中 表示 z1 的共轭复数 ) ,已知 z2 的实部是 ,则 z2 的虚部为 .

2 1 1z z iz 1z1

分析:设出复数 z1 、 z2 ,利用复数问题实数化的方法即可解决 .

Page 30: 复       数

【例 1 】设 ( 其中 表示 z1 的共轭复数 ) ,已知 z2 的实部是 ,则 z2 的虚部为 .

2 1 1z z iz 1z1

则有 ixyyxyixiyixziz )()()()(11

由已知 2 1 1z z iz 结合复数相等的概念得

2 1 ,z bi 1 ,z x yi 解析:设( , ,x y b都是实数),

,

,1

xyb

yx∴ 1b ,即 z2的虚部为 1.

1. 实数化—根据复数相等的定义

Page 31: 复       数

【例 1 】设 ( 其中 表示 z1 的共轭复数 ) ,已知 z2 的实部是 ,则 z2 的虚部为 .

2 1 1z z iz 1z1

点评:复数问题实数化是解决复数问题的最基本也是最重要的思想方法,其依据是复数的有关概念、复数的几何意义、复数相等的充要条件等 .

1. 实数化—根据复数相等的定义

Page 32: 复       数

2. 坐标化—根据复数与点的对应 实数与数轴上的点是一一对应的;类似的,

复数与复平面内的点是一一对应的 . 【例 2 】 实数 m分别取什么数时,复数 z

=(1+i)m2+(5 - 2i)m+6 - 15i 对应的点: ① 在第三象限;②在直线 x+y+4=0 上 .

)R,( babia

( , )a b

分析:本题考查复数的几何意义,解题的关键是把复数化成 z=的形式,然后由其对应的点满足的条件进行解题 .

Page 33: 复       数

【例 2】 z=(1+i)m2+(5 - 2i)m+6 - 15i 对应的点:①在第三象限;②在 x+y+4=0 上 .

解析: z=(1+i)m2+(5 - 2i)m+6 - 15i =(m2+5m+6)+(m2 - 2m - 15)i ,∵m R∈ , ∴z 对应的点为 : ( m2+5m+6 , m2 - 2m - 15 );

0152

0652

2

mm

mm 3 2,

3 5,

m

m

①要使 z对应的点在第三象限,必须∴- 3<m<- 2;

②要使 z对应的点在直线 x+y+4=0上,必须点的坐标 (m2+5m+6, m2- 2m-15)满足方程 x+y+4=0,∴ (m2+5m+6)+(m2- 2m- 15)+4=0,解得 m=-2

5或 m=1.

2. 坐标化—根据复数与点的对应

Page 34: 复       数

【例 2】 z=(1+i)m2+(5 - 2i)m+6 - 15i 对应的点:①在第三象限;②在 x+y+4=0 上 .

解析: z=(1+i)m2+(5 - 2i)m+6 - 15i =(m2+5m+6)+(m2 - 2m- 15)i ,∵m R∈ , ∴z对应的点为 : (m2+5m+6 , m2 - 2m- 15 );

点评:复数问题坐标化是解决复数对应点问题的最基本、最重要的思想方法,其依据是复数的概念、复数的几何意义等 .

2. 坐标化—根据复数与点的对应

Page 35: 复       数

3. 向量化—根据复数与向量的对应

复数 与复平面内的点 是一一对应的,故与复平面内的向量 也是一一对应的,由此可理解复数加减运算的几何意义:复数的加法即向量的加法,满足平行四边形法则;复数的减法即向量的减法,满足三角形法则 .

由复数减法运算的几何意义还可得出以下性质: z1 - z2 对应的向量,是以 z2 的对应点为起点, z1 的对应点为终点的向量 .

( , R)z a bi a b ( , )Z a b

OZ��������������

Page 36: 复       数

【例 3】复平面内,已知复数 z = x - i所对应的点都在单位圆内,则实数 x 的取值范围是 ________.

3

1

分析:本题可根据复数与向量的对应关系,构造不等式,求未知数的范围 .

2 21( ) 1,

3x 即

2 2 2 2.

3 3x 解得

. 3

1

1,OZ ��������������

解析:∵复数 z对应的点 Z(x,-

都在单位圆内,

)

3. 向量化—根据复数与向量的对应

Page 37: 复       数

【例 3】复平面内,已知复数 z = x - i所对应的点都在单位圆内,则实数 x 的取值范围是 ________.

3

1

.

3

1

1,OZ ��������������

解析:∵复数 z对应的点 Z(x,-

都在单位圆内,

)

点评:本题是复数几何意义的应用,从数形互相转换的角度上,介绍了数形结合这一思想方法,同学们在今后的实践中可进一步去体会与运用.

3. 向量化—根据复数与向量的对应

Page 38: 复       数

4. 图形化—根据复数的几何意义 由复数减法运算的几何意义可得出以下性质: |z1 - z2| 表示复平面内与 z1 , z2 对应的两点间的距离 .利用此性质,可把复数模的问题转化为复平面内两点间的距离问题,从而进行数形结合,把复数问题转化为几何图形问题求解.

1z (2 3 )z i 【例 4】已知 ,求 的最值.

分析:考察已知等式与所求式子的几何意义,进行数形结合,转化为几何问题求解.

Page 39: 复       数

1z (2 3 )z i 【例 4】已知 ,求 的最值.

解析:

(2 3 )z i (2,3)A表示单位圆上的点与点 的距离,

由平面几何知识可得(2 3 )z i 1,OA的最大值为

13 1;即为1OA 13 1.最小值为 ,即

A

Z1

O

1,z 以原点 O为圆心、半径为 1的圆,即单位圆;

∴与复数 z 对应的点 Z 的轨迹是

4. 图形化—根据复数的几何意义

Page 40: 复       数

1z (2 3 )z i 【例 4】已知 ,求 的最值.

A

Z1

O

点评:通过这个例题,我们可以体会到代数问题和几何问题互相转化的思想在分析问题与解决问题中的重要作用;对于复数模的问题,一般可转化为复平面内两点间的距离来解决 .

4. 图形化—根据复数的几何意义

Page 41: 复       数

小 结 高考对复数的考查,一般要求较低,难度

不大,均在“易”或“较易”的层次,相当数量的题源于课本,几乎只考填空题 .

解决复数问题,要注意复数问题实数化的方法,即利用复数相等的概念,把复数问题转化为实数问题,这是解决复数问题的最常用策略;同时我们还要注意复数是虚数、复数是纯虚数的条件,注意共轭复数、复数模的几何意义的应用 .

Page 42: 复       数

祝同学们成功!

再见!