靜坐過程中褪黑激素之分泌研究academy.tienti.org/binder/conf_006_16.pdf · 286...

17
第六屆天帝教天人實學研討會 286 靜坐過程中褪黑激素之分泌研究 劉劍輝(緒潔) 天帝教天人合一院副研究員 摘 要 有關靜坐的活動自古以來似乎即不曾間斷,近幾年來、國際上更有不少研究單位進行 有關靜坐的科學研究。對於靜坐過程中所引發的生理反應、特別是大腦反應的現象, 我們可以利用功能性磁振造影技術進行研究,由先前針對中國正宗靜坐所進行之實驗 結果,我們發現靜坐引炁過程中大腦數個部位受到活化,其中包括松果體位置,由於 松果體與日週期活動有關,而且會分泌褪黑激素,因此再經由褪黑激素的化學性分析 所得到的結果,顯示靜坐與松果體反應之高度相關性。根據研究所得到的綜合結果, 我們可以初步解釋靜坐所引發之基本生理反應現象,同時也可能作為深入探討人體潛 能以及特異現象的基礎。本文主要有五個部份:研究之目的、靜坐之大腦反應區域研 究、靜坐過程中褪黑激素之分泌研究、褪黑激素實驗結果及初步生理意義討論以及結 語等。 關鍵詞:中國正宗靜坐、默運祖炁、聽其自然運化、功能性磁振造影、松果體、褪黑 激素

Upload: lemien

Post on 31-Jan-2018

260 views

Category:

Documents


0 download

TRANSCRIPT

  • 286

    ()

  • 287

  • 288

    ( )

    fMRI--functional magnetic resonance imaging

    pineal body

    melatonin

    fMRIfunctional magnetic resonance imagingPETpositron

    emission tomographySPECTsingle photon emission

    computed tomographyEEGelectroencephalogramREG

    rheoencephalographyMEGmagnetoencephalography

    Herzog (1991)1Lou (1999, 2005)2,3Kjaer (2002)4

    PETYoga meditationLazar (2000)5fMRI

    KundaliniNewberg SPECT

    Tibetan Buddhist meditation(2001)6Franciscan nuns

    "verbal" based meditation(2003)7Lo (2003)8Lutz (2004)9Takahashi (2005)10

    EEGBuddhismZenJevning (1996)11Yamamoto

    (2006)12REGMEGEEGTranscendental MeditationDavidson

    (2003)13mindfulness meditationEEG

  • 289

    brain electrical activityLazar (2005)14MRI

    cortical thicknessHlzel (2007)15fMRIVipassana

    meditation

    (1997)16

    EEG theta-wave alpha-

    beta-waves fMRI

    17,18 1

    BOLDBlood Oxygenation Level DependentfMRI

    1

    p10-5SPM

    pineal body, corpora

    quadrigemina, thalamus, insula, claustrum, anterior cingulate, cingulate gyrus, Brodmann

    area 24, superior temporal gyrus, Brodmann area 47, middle temporal gyrus, right side inferior fontal gyrus, Brodmann area 37, putamen,

    Talairach 2

    anterior cingulate (Lazar5, Yamamoto12), precentral gyrus (Lazar5), cingulate

    gyrus (Newberg7), inferior frontal gyrus (Newberg6,7), right anterior insula (Lazar14), temporal gyrus (Lazar5) and thalamus (Newberg7)

    fMRIFACT

    2 9 cross correlation

    coefficient 0.30~0.79 3 3.1 0.3 pixels

    signal change 3.5 % (3.5 0.6)18

    hypothalamus 3

    superior vermisleft insula

  • 290

    19-23

    ()

    () melatonine

    1.

    melatonin

    2.

    salivamelatonin

    1~50 pg/mLanalytical sensitivity0.29 pg/mL

    3.

    melatonin

    20

    3

    24

    4

    1030

    111230

    5()

  • 291

    15 lux

    15

    ()

    melatonin 90 1~10

    10~15 15~45

    45~90

    (1) 11

    PM11:00

    (2)

    (3) 01020304560 90

    (saliva) melatonin

    ()

    (1)Salivettesaliva collection tube

    60-90

    (2) 24 24

    (3) 10

    (4)-20

    (5)

    (6)Union Clinical Laboratory

    Competitive Enzyme Linked Immunoassay (ELISA)

    BIO-RAD CODA Automated EIA Analyzer

  • 292

    ()

    52.2 2.2 ( 29~64) 15.8 1.4 (5~24)

    2.0 0.2 (1~4) 57.5 4.0 (30~90) 4

    4(a)

    4(b)

    1~10 10 1 10

    1~10

    2.3 0.2 (1~5)

    3

    ()

    baseline homogeneity

    analysis/ 0 10 8.372.12/

    5.651.10 (MeanSEM) 2.72 T paired t test

    P p-value 0.06095% confidence interval(-0.12,5.56)

    time period effect analysis

    Pre period 0mint10minPost period 10mint90minPost (I)

    10t45 mins Post (II) 45t90 mins

    Post p p

    0.05for Post (I)p0.001for both Post and Post (II) periods

    Post

    4 5

    Mean concentration profile of melatonin secretion 6

    Analysis results of melatonin level

    of the MED (meditation) and the control groupsPrePost

    p 0.001 p 0.106

  • 293

    ()

    fMRI

    5,6,7,12,14

    superior temporal

    gyrus, Brodmann area 47, middle temporal gyrusright side inferior frontal gyrus

    8

    corpora quadrigemina

    autonomic functionvisceral functions

    motor systems and sensory systemsthalamusinsula

    emotioncognitive functionsanterior cingulate

    cingulate gyrus

    hypothalamus

    splenium of corpus callosum pineal body 1

    2

    hypothalamus 3

    Massion (1995)19Tooley (2000)20 Harinath (2004)21

    Solberg et al. (2004)

    22Carlson et al. (2004)

    23

  • 294

  • 295

    1.

    Summarization of the brain activation research in different meditation styles

    Meditation style Researcher Study method Main points or results

    Yoga meditation Herzog H et al. (1991)1

    PET the ratios of frontal vs. occipital rCMRGlc (regional cerebral metabolic rate of glucose) were significantly elevated

    Yoga Nidra meditation

    Lou HC et al. (1999)2 (2005)3

    PET the posterior sensory and associative cortices known to participate in imagery tasks were seen

    Yoga Nidra meditation

    Kjaer TW et al. (2002)4

    PET increased endogenous dopamine release in the ventral striatum

    Kundalini meditation

    Lazar SW et al. (2000)5

    fMRI signal increases in the dorso lateral prefrontal and parietal cortices, hippocampus/ parahippocampus, temporal lobe, pregenual anterior cingulate cortex, striatum, and pre- and post-central gyri

    "Verbal" based meditation of Franciscan nuns

    Newberg A et al. (2003)6

    SPECT increased blood flow in the prefrontal cortex, inferior parietal lobes, and inferior frontal lobes

    Tibetan Buddhist meditation

    Newberg A et al. (2001)7

    SPECT significantly increased regional cerebral blood flow (rCBF) was observed in the cingulate gyrus, inferior and orbital frontal cortex, dorsolateral prefrontal cortex, and thalamus

    Zen-Buddhism Lo PC et al. (2003)8 EEG Perception of the inner light can be comprehended as resonance. In the meditation experiment, a significant correlation was observed between perception of the inner light and EEG alpha blockage

    Buddhist meditation

    Lutz A et al. (2004)9 EEG Long-term practitioners self-induce sustained EEG high amplitude gamma-band oscillations and phase-synchrony during meditation. The EEG patterns differ from those of controls, in particular over lateral fronto-parietal electrodes

    Zen meditation Takahashi T et al. (2005)10

    EEG increases were observed in fast theta power and slow alpha power on EEG predominantly in the frontal area

    Transcendental Meditation

    Jevning R et al. (1996)21

    REG the CBF of the frontal and occipital cortex were increased, and their showed high correlation between increased CBF and decreased cerebrovascular resistance

    Transcendental meditation

    Yamamoto et al. (2006)12

    MEG and EEG

    the medial prefrontal cortex and anterior cingulate cortex play an important role in brain activity induced by meditation

    Mindfulness meditation

    Davidson RJ et al. (2003)13

    EEG significant increases in left-sided anterior activation in the meditators compared with the nonmeditators

    Insight meditation

    Lazar SW et al. (2005)14

    MRI Brain regions associated with attention, interoception and sensory processing were thicker in meditation participants than controls, including the prefrontal cortex and right anterior insula

    Vipassana meditation

    Hlzel BK et al. (2007)15

    fMRI meditators showed stronger activations in the rostral anterior cingulate cortex and the dorsal medial prefrontal cortex bilaterally, compared to controls.

    Chinese Original Quiet Sitting

    Chen JC et al. (1997)16

    EEG the brain theta-wave showed a marked increase, while the alpha- and beta-waves showed decreased after practice

    Chinese Original Quiet Sitting

    Liou CH et al. (2005,2005)17,18

    fMRI pineal body and hypothalamus showed positive activation during the first and second stages of meditation process

  • 296

    2. Talairach Typical x, y, z Talairach coordinates and general functions of the brain activation regions of interest

    during the IPQ stage of COQS.

    Brain regions of interest Typical Talairach coordinates Location General functions 1 Pineal body (Epiphysis) [0 -28 2] behind the posterior

    commissure, attached to the posterior wall of the third ventricle

    secretes melatonin; receives sympathetic and parasympathetic innervations; controlling the onset of puberty; concerns in sexual development, metabolism

    2 Corpora quadrigemina [0 -28 -6] on the tectum, the dorsal part of midbrain

    reflex centers involving vision and hearing

    3 Thalamus (L,R) L[-8 16 0], R[8 16 0] located obliquely (about 30) and symmetrically on each side of the third ventricle

    relay information selectively to various parts of the cortex; regulating states of sleep and wakefulness; regulating arousal, the level of awareness and activity; devoted to motor systems, sensory systems (auditory, somatic, visceral, gustatory and visual systems, excepts the olfactory function); involved with consciousness

    4 Insula (L,R) L[-36 0 2], R[36 0 2] within the cerebral cortex, beneath the frontal, parietal and temporal

    associated with visceral functions, integrates autonomic information

    5 Claustrum (L,R) L[-34 0 -4], R[34 0 -4] a thin layer between extreme capsule and external capsule

    probably concerned with consciousness (by Francis Crick)

    6 Anterior Cingulate [0 23 -11], L[-6 18 28], R[6 18 28] frontal part of cingulate cortax

    autonomic functions; rational cognitive functions; empathy and emotion

    7 Cingulate Gyrus (L,R) L[-10 0 40], R[10 0 40] wraps around the corpus callosum

    emotion formation and processing, learning, and memory. Also, suppress inappropriate unconscious priming (involve the anterior cingulate gyrus).

    8 Brodmann area 24 (L,R) L[-4 -6 40], R[4 -6 40], L[-4 0 40], R[4 0 40], L[-8 10 36], R[8 10 36]

    ventral anterior cingulate cortex

    probably concerned with free will (by Francis Crick)

    9 Superior Temporal Gyrus (L,R)

    L[-46 0 -12], R[46 0 -12] below the lateral sulcus sensation of sound

    10 Brodmann area 47 (L,R) L[-34 20 0], R[34 20 0] inferior prefrontal gyrus processing of syntax in spoken, signed languages and musical syntax

    11 Middle Temporal Gyrus (L,R)

    R[56 -44 0], L[-58 -46 -6], R[58 -46 -6]

    between superior and inferior temporal gyrus

    accessing word meaning while reading

    12 Inferior Frontal Gyrus (R) R[40 0 35], R[46 30 0] Includes Brodmann area 44, 45, 47 and deep frontal operculum

    (right side) concerned with intonation, phonological and syntactic processing, syntax in spoken, musical syntax

    13 Brodmann area 37 (L,R) L[-48 -68 0], R[48 -68 0] caudal portions of the fusiform gyrus, caudal extreme of the temporal lobe

    may involve in auditory processing

    14 Putamen (L,R) L[-30 -14 0], R[30 -14 0] a portion of basal ganglia, outermost part of lenticular nucleus

    reinforcement learning; also involves in sensorimotor integration and motor control

  • 297

    1. (p10-5)Talairach [0 0 0]

    A

    D

    C

    B

    2.

    pineal gland( A )

    3.

    hypothalamus( B)

    C superior vermis D left insula

  • 298

    (a)

    (b)

    4 (a)(b)

  • 299

    3.

    Basic information of the subjects and self-evaluation of the affection of saliva sampling operation during the meditation process.

    (Number of subjects = 20) Means SEM** Range

    What is your age 52.2 2.2 29-64

    How many years have you practiced meditation 15.8 1.4 5-24

    How regularly do you practice every day(0-4 scale) 2.0 0.2 1-4

    How long do you practice each time(minutes) 57.5 4.0 30-90

    Whats the affection of the saliva sampling operation(1-10 scale)* 2.3 0.2 1-5

    *The scale numbers are set from 1 to 10 which mean no affection at all by scale 1, with very serious affection by scale 10, and may change by gradation between those two scales. Every subject was asked to give a score subjectively right after the end of the experiment.

    **SEM: Standard Error of Mean.

    4.

    Results of the time period effect analysis.

    Paired t test

    Treatment Time period* Mean SEM** One-sided

    p-value

    95% Confidence

    Interval

    Pre 8.37 2.13 --- ---

    Post (I) 9.42 2.44 0.043 (0.05, )

    Post 9.93 2.39 < 0.001 (0.86, ) Meditation

    Post (II) 10.70 2.42 < 0.001 (1.26, )

    Pre 5.65 1.10 --- ---

    Post (I) 6.51 1.50 0.152 (-0.55, )

    Post 6.70 1.48 0.106 (-0.35, ) Control

    Post (II) 6.97 1.48 0.064 (-0.12, )

    * Pre: 0t10 mins; Post (I): 10t45 mins; Post: 10t90 mins; Post (II): 45t90 mins.

    **SEM: Standard Error of Mean.

  • 300

    Meditation Control

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 10 20 30 40 50 60 70 80 90Time (mins)

    Mel

    aton

    in le

    vel (p

    g/m

    l)

    Post (I) Post (II) PostPre

    5. (Mean concentration profile of melatonin secretion). The gray area in this diagram represents the meditation period and the deep gray area represents the IPQ stage. The time periods are: Pre: 0t10 mins; Post (I): 10t45 mins; Post: 10t90 mins; Post (II): 45t90 mins. Error bars represent the SEM. (IPQ stage)

    6. (Analysis results of melatonin level of the MED (meditation) and the control groups). Error bars represent the SEM. The p-values between Pre (0t10 mins) and Post (10t90 mins) of the MED and the control groups are less than 0.001(**) and equal to 0.106 respectively.

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    14.0

    MED Control

    Mel

    aton

    in le

    vel (

    pg/m

    l)

    Pre

    Post* *

  • 301 301

    1. Herzog H., Lele V. R., Kuwert T., Langen K. J., Kops E. R. & Feinendegen L. E. Changed

    pattern of regional glucose metabolism during yoga meditative relaxation.

    Neuropsychobiology 23(4):182-187 (1991).

    2. Lou H. C., Kjaer T. W., Friberg L., Wildschiodtz G., Holm S. & Nowak M. A 15O-H2O PET

    study of meditation and the resting state of normal consciousness. Hum Brain Mapp. 7(2):

    98-105 (1999).

    3. Lou H. C., Nowak M., & Kjaer T. W. Chapter 14: The mental self, Progress in Brain

    Research 150: 197-204 (2005).

    4. Kjaer T. W., Bertelsen C., Piccini P., Brooks D., J. & Lou H. C. Increased dopamine

    tone during meditation-induce nge of consciousness. Res Cogn Brain Res.

    13(2):255-259 (2002).

    5. Lazar S. W., Bush G., Gollub R. L., Fricchione G. L., Khalsa G. & Benson H. Functional

    brain mapping of the relaxation response and meditation. Neuroreport 11(7): 15811585

    (2000).

    6.

    7.

    ebral blood flow during the complex cognitive task of

    meditation: a preliminary SPECT study. Psychiatry Res. 106(2): 113-122 (2001).

    8. Lo P. C., Huang M. L. & Chang K. M. EEG alpha blocking correlated with perception of

    inner light during Zen meditation. Am J Chin Med. 31(4): 629-642 (2003).

    9. Lutz A., Greischar L. L., Rawli N. B., Ricard M., & Davidson R. J. Long-term

    meditators self-induce high-amplitude gamma synchrony during mental practice. PNAS.

    101(46): 16369-16373 (2004).

    Alving

    d cha Brain

    Newberg A., Pourdehnad M., Alavi A. & d'Aquili E. G. Cerebral blood flow during

    meditative prayer: preliminary findings and methodological issues. Percept Mot Skills.

    97(2): 625-630 (2003).

    Newberg A., Alavi A., Baime M., Pourdehnad M., Santanna J. & d'Aquili E. G. The

    measurement of regional cer

    ngs

    10. Takahashi T., Murata T., Hamada T., Omori M., Kosaka H., Kikuchi M., Yoshida H. &

    Wada Y. Changes in EEG and autonomic nervous activity during meditation and their

    association with personality traits. Int J Psychophysiol. 55(2):199-207 (2005).

    11. Jevning R., Anand R., Biedebach M. & Fernando G. Effects on Regional Cerebral Blood

    Flow of Transcendental Meditation. Physiology & Behavior 59(3): 399-402 (1996).

    12. Yamamoto S., Kitamura Y., Yamada N., Nakashima Y. & Kuroda S. Medial prefrontal

    cortex and anterior cingulate cortex in the generation of alpha activity induced by

    transcendental meditation: a magnetoencephalographic study. Acta medica Okayama

    60(1):51-8 (2006).

    13. Davidson R. J., Kabat-Zinn J., Schumacher J., Rosenkranz M., Muller D., Santorelli S. F.,

    Urbanowski F., Harrington A., Bonus K., & Sheridan J. F. Alterations in Brain and Immune

    14

    Function Produced by Mindfulness Meditation. Psychosomatic Medicine 65: 564-570

    (2003).

    . Lazar S. W., Kerr C. E., Wasserman R. H., Gray J. R., Greve D. N., Treadway M. T.,

  • 302

    ey M., Quinn B. T., Dusek J. A., Benson H., Rauch S. L., Moore C. I. & Fischl B.

    Meditation experience is associated with increased cortical thickness. Neuroreport 16(17):

    15. B ., ., . D

    nt medial frontal cortex in adept meditators and

    16.

    Qigong on Electroenphalogram. J. of Chinese Medicine 8(3):

    17. L h C. H., Wang C. H., Lee S. C. & Chen J. H. Studies of

    i N m

    International Conference of the IEEE Engineering in Medicine and Biology Society

    19.

    ary Data. Med. Hypotheses 1995; 44: 3946.

    21. itation on

    23. D et al. Mindfulness-based stress reduction in relation to

    McGarv

    1893-1897 (2005).

    Hlzel . K Ott U., Hempel H Hackl A., Wolf K., Stark R & Vaitl D. ifferential

    engagement of anterior cingulate and adjace

    non-meditators. Neuroscience Letters 421: 16-21 (2007).

    Chen J. C., Tsai H. Y., Lee T. C. & Wang Q. F. The Effect of Orthodox Celestial Emperor

    Tian-DiMeditative

    137-154 (1997).

    iou C. H., Hsieh C. W., Hsie

    Chinese Original Quiet Sitting by Using Functional Magnetic Resonance Imaging :

    Exploring the Brain Activation Area of Invitation of Primordial Q Stage. euroi age

    1452 TH-PM (2005).

    18. Liou C. H., Hsieh C. W., Hsieh C. H., Wang C. H., Lee S. C. & Chen J. H. Studies of

    Chinese Original Quiet Sitting by Using Functional Magnetic Resonance Imaging. 27th

    Annual

    (EMBC05) ID 990 (2005).

    Massion AO, Tears J, Hebert JR et al. Meditation, Melatonin and Breast/Prostate Cancer:

    Hypothesis and Prelimin

    20. Tooley GA, Armstrong SM, Norman TR et al. Acute increases in night-time plasma

    melatonin levels following a period of meditation. Biol. Psychol. 2000; 53: 6978.

    Harinath K, Malhotra AS, Pal K et al. Effects of Hatha Yoga and Omkar Med

    Cardiorespiratory Performance, Psychologic Profile, and Melatonin Secretion. J. Altern.

    Complement Med. 2004; 10(2):261268.

    22. Solberg EE, Holen A, Ekeberg O et al. The effects of long meditation on plasma melatonin

    and blood serotonin. Med. Sci. Monit. 2004; 10(3): CR96101.

    Carlson LE, Speca M, Patel K

    quality of life, mood, symptoms of stress and levels of cortisol, dehydroepiandrosterone

    sulfate (DHEAS) and melatonin in breast and prostate cancer outpatients.

    Psychoneuroendocrinology 2004; 29: 448474.