光学材料复习

38
光光光光光光 光光光光光光光光光光 光光光光光光光 光光光体:光光光 光光光 光光光光光 体、、 光光光光光光光光光光光光

Upload: bluma

Post on 05-Jan-2016

73 views

Category:

Documents


0 download

DESCRIPTION

光学材料复习. 光学玻璃: 折射率与吸收,紫外与红外玻璃 光学晶体: 晶体结构、张量、光学非线性 光学有机材料: 有机电致发光. 光学玻璃:光学玻璃的结构. 需掌握玻璃的形成体、中间体与网络外体 能独立形成网络的 玻璃生成体氧化物 ,单键强度大 334.94kJ/mol [SiO 4 ],[GeO 4 ],[PO 4 ],[BO 3 ] 在一定条件能进入网络的 中间体氧化物 。 BeO,B 2 O 3 ,Al 2 O 3 ,TiO 2 ,ZnO,MgO,Nb 2 O 5 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 光学材料复习

光学材料复习

光学玻璃:折射率与吸收,紫外与红外玻璃光学晶体:晶体结构、张量、光学非线性光学有机材料:有机电致发光

Page 2: 光学材料复习

光学玻璃:光学玻璃的结构 需掌握玻璃的形成体、中间体与网络外体 能独立形成网络的玻璃生成体氧化物,单键强度大 334.94kJ/mol

[SiO4],[GeO4],[PO4],[BO3]

在一定条件能进入网络的中间体氧化物。 BeO,B2O3,Al2O3,TiO2,ZnO,MgO,Nb2O5

只能破裂网络的网络外体氧化物,单键强度小于 251.21kJ/ mol 、 Li2O, Na2O, K2O, CaO, SrO,BaO, In2O3, Y2O3, La2O3, ZrO2

光学玻璃的物理化学性能(折射率、色散、吸收系数、密度、机械性能、化学稳定性、热膨胀系数)由玻璃的结构所决定

Page 3: 光学材料复习

例题 1

以下哪组成分是氧化物玻璃的网络形成体:( ) A. Li2O,Na2O,K2O,BaO;

B. GeO2, P2O5, SiO2, B2O3;

C. SiO2, PbO, B2O3, P2O5;

D. B2O3, Al2O3, TiO2, Nb2O5

E. Al2O3, La2O3, K2O, MgO

Page 4: 光学材料复习

光学玻璃的折射率和色散 折射率: nD: 钠 D 线( 589.3nm ) nd : 钠光谱 d 线( 587.6nm )

阿贝( abbe )数 ( 平均色散系数 ) :

nF: F线 486.1nm,

nC: C线 656.3nm,

nF-nC 平均色散

1DD

F c

n

n n

x yxy

F C

n nP

n n

部分色散, x,y 可以是不同的谱线波长。 P.8

需要知道的谱线波长:F,C,D,d,i(365nm)

以阿贝数等于 50 为限,区分冕牌玻璃与火石玻璃

Page 5: 光学材料复习

牌号 代号 nd nF nC ns γd PCs λ80/λ5 ρ

(g/cm3)

Lithotec-CaF2 434952.318 1.432 0.5333 14/12

N-SF6 1.8052 1.8278 1.7961 1.7814 45/37 3.37

SF6 1.8052 1.8278 1.7961 1.7816 42/36 5.18

Page 6: 光学材料复习

无色光学玻璃的阿贝图* 第一部分一般标为“ N-” 、“ P-” 、或缺失,代表了玻璃是否环保。 * 牌号的第二部分符号代表了玻璃的类型:K,F,L,S,LL,SS,

* 光学玻璃的数字代号: A B.C

673323.286

Page 7: 光学材料复习

光学玻璃的基本组成冕牌 K(crown): R2O-B2O3-SiO2(R 代表碱金属 ) ,硼硅酸盐与铝硅酸盐系统。

火石 F(Flint): K2O-PbO-SiO2, 因原料中含有氧化铅,所以称为火石玻璃( TiO2,Nb2O5)

L,S 分别代表折射率的低与高,最低折射率的玻璃 FK( 含氟冕牌玻璃 ), 最高折射率的玻璃是含 La 的重火石、冕牌玻璃。

有色玻璃: 基质玻璃,即为 N-WG 玻璃,吸收带在紫外,表现为无色透明,成分中

没有可见光范围的着色剂。 离子着色玻璃,成分中含有显色的重金属离子或稀土离子。 胶体着色玻璃,在熔体冷却成型之后是不显色的,经过热处理之后,会显

示不同的颜色。吸收光谱中存在一条非常陡峭的吸收边,且显色深浅(吸收边的位置)与掺杂离子种类与浓度,热处理温度与时间密切相关。

Page 8: 光学材料复习

光学玻璃的色散

22 22 31 2

2 2 21 2 3

( ) 1BB B

nC C C

2 2 2 4 6 80 1 2 3 4 5( )n A A A A A A

Sellmeier 模型

Cauthy 模型

对于大多数无色光学玻璃而言,色散来源于紫外与红外波段的两个吸收带

Page 9: 光学材料复习

光学玻璃的折射率与成分之间的关系 密度:对原子价相同的的氧

化物来说,其阳离子半径越大,玻璃分子体积就越大,密度越小。

分子折射度:原子价相同的阳离子其半径越大(原子核对外层电子吸引力越弱)则离子极化率越高。

离子极化率还受其周围离子极化的影响,当阳离子半径增加时不仅其本身极化率上升也提高了氧离子的极化率,因而促使玻璃分子折射度迅速上升。

Page 10: 光学材料复习

外场作用下玻璃折射率的变化 折射率的温度系数:

光学非线性折射率

2 2( 1)( 2) 1= ( 3 )

6

n n n d

T n dT

与玻璃的紫外吸收波长有关

与玻璃的结构有关

InEnn ,2

2

2 30

2

2)(

nEn

三阶非线性极化率张量,在玻璃中也存在,与玻璃的分子极化度有关,与玻璃的线性折射率有关

线性折射率 n0与 ω1(1/λs) 成反比,那么非线性折射率 n2(E)应与紫外本征频率 ω2

1(1/λ2s) 成反

比。

Page 11: 光学材料复习

光学玻璃的吸收 紫外:电子跃迁, (玻璃结构的完整

性、非桥氧数目、碱金属氧化物数目与种类、形成体类型等因素决定了玻璃的紫外吸收波长): SiO2 石英玻璃

可见:过渡金属离子与稀土离子,铂污染:过渡金属离子与稀土离子可见光吸收特点。

红外:网络振动,阴阳离子的质量对于红外特征吸收波长的影响、玻璃是否含有碱金属氧化物(吸附水或其他气体)

导带

Si-O 反键

非桥氧 O-

Si-O 成键

SiO2

12.4eV10eV

8eV6eV

Na-O 反键

Na-O 成键非桥氧 O-

Na2O.2SiO2

Na+

)11

(220 mM

Page 12: 光学材料复习

硅酸盐玻璃中的硼反常 在硅酸盐玻璃中逐渐增加氧化硼的含量,其性质变化曲线往往会出现极大

或极小值,称为“硼反常”,合理地应用这一反常现象可以改善玻璃的某些物理化学性质,制得化学稳定性好,热膨胀系数小,折射率高而色散小的玻璃。

玻璃中硼离子配位数的变化所引起极大值与极小值往往出现于 Na2O /B2O3 =1 处

可以调节:折射率、热膨胀系数、化学稳定性、密度、硬度等参数

在 K9玻璃 15(K2O+Na2O)⋅10B2O3⋅75SiO

2)中加入氧化硼,玻璃的折射率将变大。 ( )

Page 13: 光学材料复习

紫外光学玻璃 色码 (color code) λ80/λ5 的定义

i 线玻璃( 365nm ):氟冕,超轻火石与轻火石玻璃 (含氟,折射率较

小)

光学石英 Lithosil-Q :控制石英中 Fe3+ 的含量,无氢火焰、气相沉积,石英在 185-2500nm 范围内都能保持高的透明性,既是优秀的透紫外材料,又是很好的近红外材料

氟化物晶体 Lithotec-CaF2 :优秀的真空紫外材料

Page 14: 光学材料复习

红外光学玻璃

三类红外光学玻璃:

硅酸盐(光学石英需要去除玻璃中的 OH- ,大折射率高硅氧玻璃,不含碱金属氧化物的硅酸盐玻璃)

非硅酸盐玻璃(碲酸盐, ZBLAN 氟化物玻璃)

非氧化物玻璃(硫硒碲化合物玻璃 Chalcogenide Glass )

Page 15: 光学材料复习

激光玻璃:稀土离子 激活离子一般是发光谱带窄,色纯度高,转换效率高,荧光寿命跨度大,

具有四能级(或三能级系统)的稀土元素或离子。 基质玻璃是具有优良光学性能、机械性能以及热性能的硅酸盐玻璃,硼酸

盐及硼硅酸盐玻璃,磷酸盐玻璃和氟磷酸盐玻璃。

基态的光谱项 2s+1LJ

稀土离子:均具有内层 4f 电子能级,稀土化合物的发光是基于它们的 4f 电子在内层 f-f或 f-d 组态之间的跃迁。

Nd 3+ 离子的 4F3/2→4I11/2 的跃迁 : 1.064μm,室温

Page 16: 光学材料复习

激光玻璃:基质玻璃 在激发光源的辐射光谱

内有宽而多的吸收带,高的吸收系数,玻璃的吸收光谱带与光源的辐射谱带的峰值尽可能地重合,有利于充分利用泵浦能量 。

对于激光波长的吸收尽可能小 ,透明度高。

极低的光学非线性折射率

良好的光学均匀性 良好的热光稳定性

硅酸盐玻璃:具有较长的荧光寿命,较高的量子效率

硼硅酸盐玻璃:荧光寿命较短,量子效率较低,但是 Nd 3+ 在硼玻璃中吸收系数较高,易获得较低的阈值能量。

磷酸盐玻璃:受激发射截面大,非线性折射率小。荧光量子寿命较短,荧光谱线窄。

Page 17: 光学材料复习

光学晶体: 7 大晶系, 14 种布拉维格子, 8 种对称要素 低级晶族:三斜 (Triclinic) ,单斜 (Monoclinic) ,正交

(Orthorhombic) , 中级晶族:三角 (Trigonal) ,四方 (Tetragonal) ,六方 (Hexagonal) , 高级晶族:立方 (Cubic) 各晶系的对称性高低 各晶系晶格常数的特点 14 种布拉维格子 8 种对称要素,特别是反演对称轴的特点

一种晶体的单胞有以下特征: a=b≠c 请问它可能属于什么晶系: ( )A. 四方 B. 三斜 C. 三方 D. 单斜 E. 六方

Page 18: 光学材料复习

32 种点群

晶系 第一方向 第二方向 第三方向立方 a a+b+c a+b六方 c a 2a+b四方 c a a+b三方 c a 2a+b正交 c a b单斜 b三斜 因为其中只包含 1 或 i,故无特殊方向

*点群是 8 种对称要素的组合

*点群符号表示在三个特定方向存在对称要素,对于不同的晶系,特定方向均不同。要知道立方晶系的三个方向(特别是第二个方向 3 ),中级晶族晶体第一个方向是高次轴的方向 C

* 看见点群符号能够说出是什么晶系的晶体,如m3m, 4mm, mm2 等

Page 19: 光学材料复习

晶向与晶面 注意晶向与晶面的符号区别

注意在非立方晶系中,符号的次序与正负不能随意替换

晶向符号代表向量

晶面符号为截距的倒数

晶面符号中 0 表示与该晶轴平行

Page 20: 光学材料复习

张量的定义 一种描述各向异性性质的数学方法就是张量方法 作用矢量、感生矢量、自由下标、哑下标 张量的阶数 张量在不同坐标系之间的形式转换(如果使用旧坐标系中张量的

定义来表示新坐标系中张量的值 (即 x1,x2,x3旧→ x’1,x’2,x’3新 ),各哑下标尽可能地靠近

奇数阶的张量在具有反演中心 i的晶体中是不存在的 晶体中具有物理意义的二阶张量都是对称张量:如应变张量不是

位移对位置的偏导 eij, 而是其中的对称部分。

3

i ij jj 1

p T q

'

ij ik jl klT a a T

Page 21: 光学材料复习

张量的定义 张量的示性面:二阶张量的示性面是椭球或双曲面,其中椭球上任意一点的径矢与法矢分别表示该二阶张量所跨居的作用矢量及感生矢量。

二阶张量的示性面具有最低的对称性是 mmm 。 诺伊曼规则表明:描述晶体物理性质的张量的示性面,其对称性必然高于晶体结构的对称性。对于立方晶系而言,具有 3 次对称轴的椭球就是球,所以立方晶系的二阶张量是各向同性的。

二阶张量在不同坐标系中的表现形式:张量的主轴与主值(同作业)

光率体的概念(证明折射率椭球是逆介电常数张量的示性面),折射率不是二阶张量。

Page 22: 光学材料复习

由于立方晶系二阶张量的示性面是一个球,所以对于所有的二阶张量来说,在立方晶系中都是各向同性的。( )

晶体中的折射率椭球说明了折射率是一个二阶对称张量。( )

试证明逆介电常数张量的示性面是光率体。

晶体结构的对称性必然高于描述晶体物理性质的张量示性面的对称性。( )

Page 23: 光学材料复习

压电性能与压电晶体 压电效应的定义 压电常数:三阶张量, 20 种点

群( 32-11-432 )可以简化成矩阵的形式 din(i=1-3,n=1-6)

逆压电效应,电致伸缩效应,逆压电系数与压电系数在符号与数值上均是相等的,注意逆压电系数在使用时必须将矩阵转置。

电致伸缩系数是四阶张量,存在于所有晶体与非晶体中。

可以证明,立方晶系中的四阶张量并不是各向同性的。

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

( )in

d d d d d d

d d d d d d d

d d d d d d

( , , 1, 2,3)i ijk jkP d i j k

( , , , 1, 2,3)jk ijk i iljk i lS d E i j k lE E

Page 24: 光学材料复习

压电晶体及应用 PbZrxTi1-xO3,即 PZT压电晶体及压电陶瓷 BaTiO3 , LiNbO3

PVDF(聚偏氟乙烯 ) 各类振荡器、滤波器、惯性传感器、表面波器件、水声器件、电声器件、超声器件以及压电马达、压电变压器与压电发电机等

在光学中的应用:可调谐 FP滤光片(调节腔长),在自适应光学中的应用(可变形的微反射镜阵列)

Page 25: 光学材料复习

热释电效应 热释电效应的定义:具有自发极化的压电晶体。 一阶张量,具有方向性,存在于 10 种点群( 1,2,3,4,6,m,mm2,3m,4mm,6mm )

主要应用:热释电探测器、热释电显像管等红外非制冷热型热探测仪器,能在室温下工作,具有广谱响应

FD=p’/Cv(εrtgδ)1/2 ,在选择材料的过程中,要求具有较大的热释电系数,较低的介电常数,较低的介电损耗以及较低的体积热容 ,对于热释电阵列器件来说要求具有较大的介电常数

热释电器件用材料: TGS(硫酸三甘肽 ) , LiTaO3 , SBN-

50 , PVDF 与其二聚物 P(VDF-TrFE)

( 1, 2,3)i iP p T i

热释电晶体的热释电电流与所探测的温度成正比。 ( )

Page 26: 光学材料复习

铁电效应 定义:在外电场作用下,自发极化的方向可以逆转或者可以重新取向的热释电晶体称为铁电晶体。

电滞回线、剩余极化、矫顽场 居里温度、铁电相与顺电相

BaTiO3 的铁电相及顺电相 120℃以上,立方晶系, m3m 120 ~0 , ℃ ℃ 四方晶系, 4mm 0 ~-80 ,℃ ℃正交晶系, mm2 -80℃ 以下,三方晶系, 3m 120℃ 为居里点,其余为转变温度。

Page 27: 光学材料复习

下图为罗息盐晶体的自发极化与温度的关系,以下哪种说法是正确 的:( )

A. 在 24℃ 和 -18℃时晶体都经历了结构的变化, 24℃ 是罗息盐晶体的居里温度, -18℃不是。B. 罗息盐晶体在 24℃ 以上是铁电相, 24℃以下是两个顺电相,所以 24℃是居里温度。C. 罗息盐 晶体在 24℃ 以下是两个不同的铁电相, -18℃不是居里温度。D. 24℃ 是罗息盐晶体的上居里点,而 -18℃是罗息盐的下居里点。

Page 28: 光学材料复习

铁电晶体及应用 非挥发性铁电随机存取存储器 FRAM(Ferroelectric random access

memories) :具有非挥发性和基于自发极化的取向,断电后保存存储数据,存取速度快,能耗低。 PZT (PbZrxTi1-

xO3), SBT(SrBi2Ta2O9) ( non-fatigue)

铁电微波调谐器件 :BST(BaxSr1-xTiO3) , 在一定的温度与微波频率

范围内介电损耗较低、介电调谐率较高、介电调谐响应快

Page 29: 光学材料复习

晶体的非线性光学性能 二阶光学非线性极化率张量:三阶张量,存在于 20 种不具反演中心的点群中(晶体的对称性对于 χ(2)

in 的影响完全相同于对压电系数 din 的影响 )

三阶光学非线性极化率张量:四阶张量,存在于所有的晶体与非晶体中

和频、差频、倍频、光学整流、多光子吸收、参量振荡、受激拉曼散射等都是光学非线性效应

(2) (2)3 1 2 3 1 2( ) ( , , ) ( ) ( ), ( , , 1, 2,3)i ijk j kP E E i j k

Page 30: 光学材料复习

位相匹配

PM

光轴

n1o(ω)

n1e(ω)

n2o(2ω)

n2e(2ω)

θm

(a)n1

o(ω)

n1e(ω)

n2o(2ω)

n2e(2ω)

光轴

θm

(b)

PM

1 1 2 2( ) ( )n n

Page 31: 光学材料复习

光学非线性晶体材料 1. 有较高的光学非线性极化率,要求 χin接近或高于 KDP 晶体的

χ36 , 2. 能实现位相匹配 3. 透过波段较宽 4. 晶体不易出现光学损伤 5.容易获得大块,高光学质量的晶体 6.硬度大,化学稳定性好,不易潮解

KDP (能得到大块晶体、紫外应用) LiNbO3 (全能、红外、高频、大块晶体) 碘酸盐晶体 硫化物、硒化物晶体(红外应用)

Page 32: 光学材料复习

电光效应 线性电光效应(是一种二阶

光学非线性效应) ( Pockels效应):

二次电光效应 ( Kerr效应):

各向同性介质中存在,而在各向异性介质中 Kerr效应比Pockels效应小好几个数量级。

2

1E

n

22

1E

n

0ij ij ij ijk kE

( , , , 1, 2,3)ij ijkl k lh E E i j k l

线性电光系数张量:三阶张量,存在于不具反演中心的晶体中,同样可以写成矩阵形式:Δβm=γmkEk(m=1-6,k=1-3)

非线性电光系数张量:四阶张量,与三阶光学非线性极化率张量相关

Page 33: 光学材料复习

横向电光效应与纵向电光效应 纵向应用:电场方向平行于光传播方向,要求电极能透光,在应

用中通常采用透明电极,但是损耗较大。 横向应用:通光方向与外加电场方向相垂直

纵向应用实例:可调谐的 FP滤光片,调节折射率 横向应用实例: Mach-Zehnder器件,相位调制、强度调制

具有大 γ51 电光系数的晶体: BaTiO3

具有大 γ13, γ33 电光系数的晶体: SBN75 ( Sr0.75 Ba0.25Nb2O6 )

Page 34: 光学材料复习

已知 Sr0.75Ba0.25Nb2O6 晶体室温工作时属于 4mm 点群,其线性电光系数张量矩阵为

13

13

33

51

51

0 0

0 0

0 0(4 )

0 0

0 0

0 0 0

mk mm

,当电场加在光轴方向时,其中某方向的人工双折射为

31

2 e cEn ,请推导 γc的表达式?已知 Sr0.75Ba0.25Nb2O6晶体的 γ33(1300pm/V)和 γ13(60pm/V),

请图示说明如何应用该电光系数分量。

Page 35: 光学材料复习

光学有机材料 有机发光的原理,阴极(低功函数的金属,如Mg,Ag等)、阳极( ITO) 所使用的材料, ETL, HTL

有机发光材料:小分子( Alq3 ),聚合物( PPV)

有机材料的特点: 范德华力 激子沿着分子或聚合物骨架之间跳跃 载流子迁移率低 杂质是载流子的陷阱 对水汽敏感而需要封装 成膜方式特殊(小分子真空沉积,聚合物甩膜或喷墨打印)

Page 36: 光学材料复习

OLED 对于材料的要求 较高的热稳定性(高的玻璃化温度),高电化学和光化学稳定性 .

固态高荧光量子效率。

足够高的空穴、电子迁移率 (Mobility) 。

较好的可处理特性

合适的电离能和电子亲和能(保证在界面处能级匹配,与 ITO及阴极金属)

Page 37: 光学材料复习

几种典型的有机发光材料聚合物(要求看到分子式知道名称): PPV (空穴传输材料),边链取代以增加溶解性,发较长波长的

光。 PFO (聚芴):具有液晶的特性,分子易排列有序,能发偏振性

的光 聚芳胺( PVK) :典型的导空穴材料

小分子: 芳胺( TPD ):导空穴材料 Alq3 : 8羟基喹啉铝,最早被研究的小分子发绿光材料 ETL 。

Page 38: 光学材料复习

图示为法布里 -珀罗干涉腔 (Fabry-Perot Interferometer FPI) ,该器件广泛运于高分辨光谱仪,调制器与光学干涉滤光片, FPI 的透过率可以用下式表示:

其中 I为 FPI 的透射率, F 是一个与介质反射镜反射率相关的物理量, T, R 分别为介质高反射膜的透过率与反射率, , φ 代表由于反射膜而带来的位相差, n,l 分别代表功能薄膜的折射率与厚度,通过调节加在功能材料两端的电压,就可以调节 n,l 的值,达到电控器件的透过率调制的目的,请分析图示的结构与什么物理效应相联系,要达到有效的调制,对于其中的功能材料有什么要求?

2

2 2

T 1I=

(1 R) 1 Fsin

2 nl

V

透明电极

介质高反射镜

光学玻璃

单晶功能薄膜